
RSIP: Rail Safety Improvement With Advanced Situational Awareness
At Grade Crossings Using Cooperative Perception And Trusted V2x

Communications

Public Rail-Crossing Deployment (March rd. near Carling/Station rd.)

Data collection, analysis and sensor evaluation

May 15 2024

Sensor Cortek
Prepared by:

Area X.O, Invest Ottawa
Prepared by:

NAME: NAME:

Sensor Cortek
Approved by:

Area X.O, Invest Ottawa
Approved by:

NAME: NAME:

DISCLAIMER

This report reflects the views of the authors only and does not reflect the views or policies of

Transport Canada.

Neither Transport Canada, nor its employees, makes any warranty, express or implied, or

assumes any legal liability or responsibility for the accuracy or completeness of any information

contained in this report, or process described herein, and assumes no responsibility for

anyone's use of the information. Transport Canada is not responsible for errors or omissions in

this report and makes no representations as to the accuracy or completeness of the information.

Transport Canada does not endorse products or companies. Reference in this report to any

specific commercial products, process, or service by trade name, trademark, manufacturer, or

otherwise, does not constitute or imply its endorsement, recommendation, or favoring by

Transport Canada and shall not be used for advertising or service endorsement purposes.

Trade or company names appear in this report only because they are essential to the objectives

of the report.

References and hyperlinks to external web sites do not constitute endorsement by Transport

Canada of the linked web sites, or the information, products or services contained therein.

Transport Canada does not exercise any editorial control over the information you may find at

these locations.

EXECUTIVE SUMMARY

Overview

This project aims at defining the processes, exploring the challenges, and building the tools

necessary to effectively operate a smart rail-crossing. The learnings from this project can help

hone requirements, procure suitable hardware, and advance the techniques used in the data

collection and analysis with the objective of creating a safe environment for road users around

rail crossings; especially for vulnerable road users.

Goals

The goals of this project is to leverage unique capabilities, expertise, and collaborators to

develop a data collection pipeline that collects data from an rail-crossing fitted with a suite of

sensors, create a list of critical-cases that breach rules and regulations in the rail-crossing

environment, process collected data to find instances of said critical use cases, and finally,

develop a dashboard prototype to allow the exploration of the collected data and interaction with

the instances of critical-case events.

Key Learnings

The project produces a wealth of learnings in all its aspects. In the data collection, the key

learning was the mechanism to collect data from heterogeneous sensors along with the

temporal properties of the data along with the best approaches to transmit the data to the world.

From processing the data to find critical-case events, the key learnings were in setting

thresholds and the importance of accurate calibration of the sensors in order to map critical

events to the physical rail-crossing. Finally, a key takeaway was the approach to designing the

dashboard in order to serve appropriate data concerning the critical-case events to

stakeholders.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the following experts, along with many other individuals,

for their invaluable contributions, dialogues, insights and suggestions to the authors made

during the project and the preparation of this report:

Team Area X.O:

Divyanshu Kamboj
Rebecca Thompson
Susanne Cork
Ethan Ross

City of Ottawa:
Omar Choudhry

mailto:dkamboj@investottawa.ca
mailto:rthompson@investottawa.ca

Table of Contents

1. Introduction 8
a. Purpose 8
b. Background 8
c. Project Scope 9
d. Limitations 10

i. Sensor Limitations 10
ii. Hardware limitations 11
iii. Rail-Crossing Limitations 12
iv. Connectivity Limitations 12

e. Milestones 12
f. Deliverables 13
g. Project Team 14

2. Hardware Framework 14
a. Sensors 15
b. Supporting Hardware 17
c. Connectivity 17

3. Data Collection 17
a. Hardware Framework 18
b. Software Framework 19
c. Methodologies 20
d. Delivery and Distribution 21
e. Challenges and Limitations 21

4. Data 22
a. Sensor Data 22

i. LiDAR 22
ii. Thermal 22
iii. RGB 22

b. Analysis 23
i. Metadata from InfluxDB 23
ii. Metadata from inhouse AI processing 23
iii. Lidar Object Detection 24
iv. Proposed Event Cases 36
v. Summary 37

5. Dashboard 39

a. Purpose 39
b. Functionality 39
c. Framework 41

i. Frontend 41
ii. Backend 41

d. Data formats 41
e. Data synchronization 42
f. UI Elements 42

i. Navigation panel 42
ii. Control panel 43
iii. Main display 44
iv. Secondary display 44
v. Critical Events Display 45
1. Pie-Chart Selector 45
2. Event List 46

g. Future considerations 47
i. Dashboard development: 47
ii. Backend development 47

Appendix A : JSON Schema for Critical Events 49

1.Introduction
a. Purpose

The purpose of this project is threefold: the first is to design a reliable and efficient data

collection pipeline to collect data from the sensors at the rail-crossing, the second is to establish

a preliminary case-based analysis of events captured by the sensors, and the third is to develop

a dashboard prototype that will serve as a critical tool in summarizing events captured by the

suite of sensors installed at an rail-crossing. The dashboard provides an overview of critical

events occurring at the rail-crossing, allowing traffic engineers to monitor and manage traffic

flow, identify potential issues, and make data-driven decisions. A well-designed dashboard can

help traffic engineers to improve traffic flow, reduce the likelihood of accidents, and

communicate effectively with other stakeholders. By leveraging the power of real-time data and

visualization, a dashboard can help to optimize the performance of an rail-crossing and ensure

the safety and efficiency of the transportation system.

b. Background

This project was led and coordinated by Invest Ottawa which included communications

with all project partners and stakeholders. Invest Ottawa’s partners included the National

Research Council and a range of high-tech companies and specialized testing service providers

with expertise in vehicle automation and connectivity.

Transport Canada’s Rail Safety Improvement Program (RSIP) supported this testing campaign

in Ottawa, Ontario. Transport Canada’s RSIP mandate is to support projects which help create

nationally consistent tools that address road safety challenges. Results of testing conducted

within this testing campaign will be used by Transport Canada to develop national regulations

and non-regulatory tools.

Machine learning focuses on getting machines to learn and act like humans do by using one or

more perception sensors, hardware and software that analyzes and interprets sensor

information, and a system which sends commands to an automated system.

Deep learning technology is used to predict patterns and perform judgment-based applications

through the deployment of artificial intelligence (AI) algorithms to teach robots and machines to

do what comes naturally to humans: learning by example.

Machine vision and deep learning-based methods are key enablers of many safety services and

applications for Connected and Automated Vehicle (CAV) and Intelligent Transportation

Systems (ITS).

The focus of this project is on the safety of vulnerable road users (VRUs) through automated

detection and classification, i.e., identifying VRUs at, through and around rail-crossing. The term

Vulnerable Road User (VRU) has been defined and interpreted by transportation communities

worldwide in different ways. For example, the U.S. Department of Transportation’s National

Strategy on Highway Safety has defined VRUs as: “road users who are most at risk for serious

injury or fatality when involved in a motor-vehicle-related collision. These include pedestrians of

all ages, types, and abilities, particularly older pedestrians and people with disabilities. VRUs

also include bicyclists and motorcyclists. Older drivers may also be considered to fit into this

same user group." [1] Although the problem of object detection and classification is not new to

the CAV/ITS community, prior works have overlooked certain categories of objects such as

VRUs. Most publicly available datasets have tended to ignore these pedestrian classes, often

with little or no samples at all. Example classes of important VRUs include those using

wheelchairs, strollers and other mobility devices such as walkers and canes.

c. Project Scope

The scope of this project is to capture data from a public rail crossing and analyze it to identify

critical use cases that violate the scene conditions. The project will utilize cameras (both color

and thermal) and lidar sensors to capture traffic data: the number of cars, their speed and

direction of travel, etc. The captured data will then be calibrated, analyzed to identify any

patterns or anomalies that may indicate potential safety issues at the rail-crossing.

The next step of the project will be to develop algorithms to process the data and identify critical

use cases that violate the conditions at the rail-crossing. These critical use cases include drivers

running red lights, failing to yield, or speeding through the rail-crossing. Once these critical use

cases have been identified, the project will develop a dashboard to display the findings in a

user-friendly format. The dashboard will be accessible to stakeholders such as city officials,

transportation departments, and law enforcement agencies, to help them understand the data

and take appropriate actions to improve the rail-crossing's safety.

d. Limitations

The limitations in this project are divided in the following categories:

i. Sensor Limitations

Sensor limitations in a multi-sensor environment is primarily about the size of the field of view

(FoV). Ideally, the FoV of all the sensors should be as large as possible and consistent between

sensors. However, this is not true in reality. The variation of the fields of view causes a limited

overlap between sensors and limits the benefit of analyzing the data from the perspective of

multiple sensors and leveraging the strength of each individual sensor in the face of challenging

visibility conditions. For instance, if one sensor has a narrow FoV, it may miss objects that

another sensor with a wider FoV might detect, leading to incomplete data and potential blind

spots.

Lidar, a key component in this analysis, has its own set of limitations. One significant challenge

with lidar is its sensitivity to environmental conditions. Factors such as rain, fog, and dust can

severely impact its performance, reducing accuracy and reliability. Additionally, when working

with two lidars, as is the case in this project, synchronization and calibration issues can arise.

Ensuring that both lidars are perfectly aligned and calibrated to produce accurate and consistent

data is a complex task. Misalignment can lead to data discrepancies, making it difficult to merge

data streams and create a coherent and accurate 3D representation of the environment.

The size of the data generated by lidar sensors is another critical limitation. Lidar systems

produce large volumes of data, which can pose challenges for data storage, transmission, and

processing. Proprietary implementations of lidar data processing can further complicate matters.

These implementations often lack standardization, making it difficult to integrate data from

different lidar systems or to use common processing algorithms. This lack of standardization can

lead to inefficiencies and increased costs, as custom solutions are needed for each proprietary

system.

Data transportation and processing are also significant hurdles. The sheer volume of data

generated by multiple lidars requires robust data handling and processing capabilities.

Transmitting this data in real-time, especially in bandwidth-constrained environments, can be

challenging. Additionally, the computational power needed to process lidar data is substantial,

requiring advanced hardware and optimized algorithms. Balancing the need for real-time

processing with the available computational resources is a constant challenge, impacting the

overall efficiency and effectiveness of the lidar-based system.

ii. Hardware limitations

Collecting data reliably from a suite of sensors is an essential step in building a robust dataset

for further analysis and for processing by machine learning algorithms. The limited space along

with the form factor allowed to be installed at the physical location limits the type of edge

computer to be deployed at said rail-crossing. These limitations generally restrict the possible

processing power of the edge machine; thresholds have to be set in order to accommodate the

capabilities of the machine available for deployment at the location of interest.

Storage capacity is another critical hardware limitation. The vast amounts of data generated by

sensors, especially high-resolution lidar systems, require significant storage resources. Edge

computers with limited storage capabilities may struggle to handle the volume of data, leading to

potential data loss or the need for frequent data offloading, which can interrupt real-time

processing. Furthermore, the storage solutions must be robust and reliable, capable of

withstanding the environmental conditions at the deployment site, such as temperature

fluctuations, humidity, and physical vibrations.

Processing power is equally crucial in the context of edge computing at rail-crossings. The edge

computers must be powerful enough to handle the real-time data processing demands of

multiple sensors, including complex computations required for machine learning algorithms.

Limited processing power can lead to delays in data analysis, reducing the system's overall

effectiveness and responsiveness. High-performance processors are often required to ensure

that the data is processed swiftly and accurately, but the constraints on space and power

consumption at the deployment site can limit the choice of suitable hardware.

Networking capabilities are another significant factor that adds to the hardware limitations of the

system. Reliable and high-speed network connections are essential for transmitting data from

the edge devices to centralized servers or cloud platforms for further analysis and storage.

However, in remote or harsh environments, achieving stable network connectivity can be

challenging. Network latency and bandwidth limitations can hinder real-time data transmission,

affecting the timeliness and reliability of the system's responses. Additionally, robust networking

hardware is necessary to ensure consistent communication between sensors, edge devices,

and remote servers, which can be challenging to deploy and maintain in field conditions.

Other factors contributing to hardware limitations include power supply constraints,

environmental protection, and maintenance requirements. Edge computers and sensors must

be designed to operate on limited power supplies, often relying on solar panels or batteries in

remote locations. Ensuring that these devices have sufficient power to operate continuously is a

significant challenge. Moreover, the hardware must be ruggedized to withstand environmental

hazards such as dust, moisture, and temperature extremes. Regular maintenance and updates

are also essential to keep the system running smoothly, but these can be difficult to perform in

remote or hard-to-reach locations, further complicating the deployment and operation of edge

computing systems at rail-crossings.

iii. Rail-Crossing Limitations

Not all rail-crossings are alike. Therefore, the critical-case events may not apply across all

rail-crossings. This limitation causes a subset of the identified critical cases to be applied only to

the rail-crossing at hand, and similar types of rail-crossings.

iv. Connectivity Limitations

The massive amounts of data collected is the first challenge to the connectivity to the system.

The current system of connectivity leverages 4G technology to transmit data to the internet.

Thus, the system inherits the limitations of the speeds of 4G, along with that of network loads at

peak times. These limitations in turn imposed size and time of transmission limitations on the

captured data.

e. Milestones

Below are the milestones for this project:

● Sensor and Data Configuration

○ Milestone: Complete sensor operationalization, initial data collection, field testing,

sensor configuration validation, and data storage setup

● Data Collection and Classification
○ Milestone: Complete dataset cleaning, building, and annotation for Lidar and

Radar

● Model Design and Training
○ Milestone: Complete model design and initial training

● Data Analysis and Dashboard Development
○ Milestone: Update dashboard for object detection and implement tracking of

unsafe behaviors

● Testing and Final Report
○ Milestone: Deliver final report by June 30th 2024

f. Deliverables

Below are the deliverables for this project:

● Sensor and Data Configuration
○ Operationalize sensors

○ Initial data collection including field testing

○ Validate sensor configuration

○ Establish data storage protocols

● Data Collection and Classification
○ Clean and build datasets

○ Annotate data for Lidar and Radar

● Model Design and Training
○ Design models

○ Train models

● Data Analysis and Dashboard Development
○ Update the dashboard for object detection

○ Implement tracking of unsafe behaviors at and around at-grade crossings for

Lidar

● Testing and Final Report

○ Deliver draft report

○ Complete edits and finalize report by June 30, 2024

g. Project Team

Below is a table highlighting the project team:

Sensor Cortek AreaX.O / Invest Ottawa

Robert Laganiere - Prj. Mgmt. - Prj. Mgmt.Divyanshu Kamboj

Fahed Hassanat - Prj. Mgmt. - Dev. - Prj. Mgmt.Rebecca Thompson

- Dev.Antoine Huet Ethan Ross- Tech. Dply.

Morteza Pasandi - Dev.

2.Hardware Framework
The hardware framework consists of the sensors, the network devices, the supporting devices,

and an edge computer. The images below show the sensors mounted on poles at the

rail-crossing. For detailed information about the collection framework, please refer to section 3

part a.

mailto:dkamboj@investottawa.ca
mailto:rthompson@investottawa.ca
mailto:antoine@sensorcortek.ai

a. Sensors

Three types of sensors are present at the rail-crossing scene: LiDAR, thermal

(infrared-spectrum) camera and RGB (visible-spectrum) camera. The two lidar sensors are

Cepton Vista P90 laser scanners installed at a height of 18’, with a range of 200m at 30%

reflectivity, fields of view (FOV) of 60° horizontal and 22° vertical, and angular resolutions of

0.25°x0.25° (10 Hz) and 0.27°x0.27° (16 Hz).

The two thermal cameras are Bosch Dinion IP Thermal 8000 cameras installed at a height of

20’, with a resolution of 640x480 at a framerate up to 30 fps, and a thermal sensitivity < 50 mK.

The two RGB pan-tilt-zoom (PTZ) camera are Bosch Autodome IP Starlight 7000i camera at a

height of 30’, with a resolution of 1920x1080 at a framerate up to 30 fps and a dynamic range of

120 db to improve the quality of low-light images.

Vista P90 Lidar

Bosch Dinion IP Thermal 8000

Bosch Autodome IP Starlight 7000i

b. Supporting Hardware

The supporting hardware in the data collection system consists of two MHCorbin devices that

capture meta-data from all the sensors at the rail-crossing and report it to a cloud-based

database. Two MHCorbin devices are required to handle the load that is produced from two

lidars; it was found that using only a single MHCorbin device is not sufficient to handle both

lidars present at the rail-crossing.

c. Connectivity

The system uses unmanaged switches to connect the components internally while a 4G modem

provides connectivity to the outside world. The system was provisioned with IP rules that

controlled access to the system from outside. These provisions allow the connection to

individual sensors to monitor or modify settings, as well as connectivity to the edge computer for

the formal data collection process.

3.Data Collection
Data collection is at the core of this project. The data captured from the rail-crossing using

thermal, LiDAR, and RGB sensors provides a wealth of information for offline processing to

identify critical events and unusual anomalies. The thermal sensors capture the temperature of

objects, allowing for the detection of vehicles, pedestrians, and other objects. The LIDAR

sensors use laser beams to create a 3D point cloud of the rail-crossing, enabling the detection

of the location, speed, and direction of objects. The RGB sensors capture color images of the

rail-crossing, providing a visual representation of the scene. By combining data from these

sensors, it is possible to create a comprehensive dataset that can be analyzed offline to identify

critical events and unusual anomalies, such as accidents, near-misses, and traffic congestion.

The thermal, LiDAR, and RGB sensors are mounted on the same pole near the rail-crossing for

data collection. The sensors are synchronized to capture data at the same time, and the data is

stored on a compute module that is installed at the poles, then transmitted wirelessly to a

remote server for offline processing. Once the data is collected, it can be pre-processed to

remove noise and correct any sensor biases or errors. The pre-processed data is then analyzed

using machine learning algorithms and computer vision techniques to identify critical events and

unusual anomalies. For example, object detection algorithms can be used to detect and track

vehicles and pedestrians, while anomaly detection algorithms can be used to identify unusual

patterns in the traffic flow or behavior. Overall, collecting data from a rail-crossing using thermal,

LIDAR, and RGB sensors can provide valuable insights into traffic patterns and behavior,

enabling transportation planners and engineers to make informed decisions about traffic

management and safety.

a. Hardware Framework

The hardware framework consists of the sensor, the network devices, the supporting devices,

and an edge computer. The figure below shows the system architecture that allows for collecting

data from all available sensors.

Hardware Connection Diagram

b. Software Framework

The software framework used for data collection from the sensors at the rail-crossing was

composed of multiple components due to heterogeneity of the sensors at hand. The following is

a decomposition of the various components used to capture data from the different sensor:

i. LiDAR data collection: The Cepton lidar connects to the system of

sensors via a client server architecture. The lidar takes the role of the

server, while the device connected to the lidar initiates the connection and

plays the role of the server. The Cepton is made such that it broadcasts

the lidar frames to all devices on the same subnet. It was important to

take this into consideration, such that other devices on the network do not

leak out the information from the lidar. The Robot Operating System

(ROS) was the best choice of a sub-framework for collection of lidar

frames. ROS enables the design of processes that will listen to the

broadcast from the Cepton lidar and capture that information using scripts

within the ROS environment. The architecture of the system had to take

into account the presence of two separate Cepton lidars, and thus the

arrival of messages from two different devices.

ii. Thermal and RGB data collection: To capture data from the cameras, both

thermal and PTZ, the system takes advantage of the presence of a

streaming server available natively. The stream is initiated by a client

script that makes a request to the RTSP server available on the cameras

and extracts frames from the stream while pairing these frames with the

timestamp of their arrival.

To enhance the data collection process, a separate procedure is initiated

to handle the metadata associated with each frame. This procedure

employs FFMPEG, a powerful multimedia framework, to establish a

session that captures not only the video stream but also the

accompanying metadata. The metadata, which includes information about

the detections made by the on-board AI, is crucial for understanding the

context of the captured frames. By initiating an FFMPEG session, the

system can continuously record both the visual data and the AI-generated

metadata in real-time, ensuring that each frame is accurately annotated

with relevant detection information.

The use of FFMPEG also allows for advanced processing capabilities

such as encoding, decoding, and streaming, making it a versatile tool for

handling complex data streams. This approach ensures that the data

collected is comprehensive and rich in detail, facilitating better analysis

and interpretation. By capturing both the video and the metadata, the

system can leverage the AI's capabilities to identify and track objects,

providing valuable insights into the behavior and movements within the

monitored area. This dual-stream approach not only enhances the

accuracy of the data but also enables more sophisticated post-processing

and analysis, leading to more effective monitoring and decision-making.

c. Methodologies

The process of the data collection culminated in using scripts to put together the different

components of the collection system in order to initiate a recording session. Bash scripts were

written to call the different scripts and to start them as different processes on the edge system.

The main script contained a customizable variable that controlled the length of the capture

process and terminated all recording processes gracefully once the time limit was reached.

It was important to be conscious of the size of the data so as not to exceed the storage capacity

of the edge device. The data coming from the sensors was saved in directories corresponding

to the different sensors in the system. The exception to this is the lidar sensors, as the data

stream resulting from the capture architecture was merging the messages from both lidar.

At the end of the data capture session, the directories containing the captured data were

compressed to allow for a robust and efficient transmission of data.

d. Delivery and Distribution

The system at the rail-crossing hosts a 4G modem that allows for internet connectivity to the

rest of the world via a static IP address. Using the IP address to the rail-crossing system, the

edge computer can be accessed through the port forwarding rules set up on the system. With

connectivity to the internet and accessibility to the edge machine, the data can be transmitted to

a machine offsite for post processing and distribution. The protocol of choice was to use SCP to

transfer the data since it provides a layer of security on the transmission pipeline. However, due

to the large amount of data and the instability of the network, it was decided that a drop-in

swappable storage is the best option to collect data. Through using controlled data collection

sessions, the size of data can be determined beforehand to best suit the storage requirements.

The lidar data was processed to split the messages and group them first by sensor, then by

groups of one minute duration, and finally compressed. Data from all the sensors was then

uploaded to a secure cloud repository where the development teams have access to them.

e. Challenges and Limitations

As mentioned earlier, one of the most critical challenges in the data capture process is the

limitation in connectivity using the 4G modem. Every hour captured at the rail-crossing results in

approximately 250 GB of compressed data. The transfer of this amount of data takes a long

time over 4G connectivity. There is also the issue of frequent disconnection of the network,

which causes corruption in the currently transmitted file and requires retransmission after the

connection is re-established, thus the decision to move to swappable on site storage for data

exchange.

The second challenge was in the use of a passively cooled edge machine that relies on

dissipating heat via an attached heat sink. The intensity of the collection processes causes the

system to heat up significantly, faster than the dissipation system can discharge generated heat.

This causes the system to resort to throttling down the cycles of the CPU and jeopardizing the

health of the collection processes. It was noticed that the longer the recording session, the more

the quality of the collected frames degraded, showing a direct relation between this degradation

and the down-throttling of the CPU cycles due to heat buildup.

4.Data
Data is collected from a suite of 3 complimentary types of sensors: two Cepton LiDAR scanners,

two infrared-spectrum (thermal) Bosch cameras and a visible-spectrum (RGB) Bosch camera.

Each of these sensors has its own set of disadvantages that restricts the situations in which

they can be used with high accuracy.

Each sensor captures the rail-crossing scene in its own format. The resulting data is used to

detect agents moving at the rail-crossing; those detections are in turn analyzed to identify

dangerous situations for road users.

a. Sensor Data
i. LiDAR

The Cepton Vista P90 LiDAR is used to capture 3D point clouds of the rail-crossing scene.

LiDAR sensors are resilient to poor weather conditions, but the processing of point clouds is

computationally expensive. It is the only sensor in the suite to capture 3-dimensional information

about the scene. This sensor would be used to detect pedestrians walking on the road when

they shouldn’t, triggering an alarm with a low false-positive rate.

ii. Thermal

The Bosch Dinion IP Thermal 8000 Cameras capture data in the infrared spectrum at a

resolution of 640x480. This makes them resilient to changes in visible lighting and in weather

conditions at the cost of lower image resolution. This sensor can be used to detect people and

animals on the road in poor weather and lighting conditions (e.g. night-time, heavy storms).

iii. RGB

The Bosch Autodome IP Starlight 7000i camera captures light in the visible-spectrum at a high

definition resolution of 1920x1080. This makes it the most understandable sensor type and the

most susceptible to poor lighting and weather conditions. It can be used to track anything

moving at the rail-crossing and to detect any kind of resulting unsafe behavior.

b. Analysis

i. Metadata from InfluxDB

Aside from the raw data collected from the sensors, the MHCorbin device collects and transmits

information about the detections that were captured by the sensors’ onboard AI. This data is

transmitted to a cloud-based database. In general, the meta-data includes information about the

position of the detected object, its classification, the times of detections and an ID for the

tracked object. Meta-data from the Cepton lidars also includes information about the size and

speed of the object. The image below shows a sample of the detections performed by the

onboard AI on a frame from the PTZ camera at the rail-crossing.

ii. Metadata from inhouse AI processing

The inhouse AI processing used proprietary algorithms developed by Sensor Cortek to process

the raw data from the Lidar sensor and produce information about the objects in the scene. This

was essential for detecting the critical-case events identified for this project, as the information

reported to the database was not sufficient to get a granular level of details for extracting

instances of said events.

In order to perform the proper analysis to detect the event cases, the data will undergo three

stages of analysis:

1. Detection: this stage involves an AI model detecting an object in the scene. The

detection is used to identify the space the object occupies in 2d or 3d

representation of the scene from the sensor data. For example, for cameras, the

detection is going to be represented by a two dimensional bounding box the

encapsulates the object and for Lidar a three dimensional bounding box in x,y,z

direction to perform the same task.

2. Classification: this stage involves classifying the detected object under a specific

class of objects. For example, in this study, the detected objects of interest are

Person, Car, Bus, Truck and Cyclist.

3. Tracking: this step involves identifying the same object across multiple frames

while it is in view of the sensor. Tracking classified objects is essential because

actions performed in the scene are performed by an actor, and to attribute the

actions to the corresponding actor it is necessary to identify correctly who

performed the action.

iii. Lidar Object Detection

OpenPCDet served as the starting point for identifying a baseline for object detection using

LiDAR, demonstrating its fundamental role in advancing the capabilities of LiDAR-based

detection systems . OpenPCDet is an advanced, open-source project for LiDAR-based 3D object

detection, developed under the OpenMMLab initiative. It is built on the PyTorch framework and

supports various state-of-the-art 3D detection models, providing a flexible and scalable solution

for point cloud data processing. The toolbox includes highly refactored codes for both one-stage

and two-stage detection frameworks, making it adaptable for diverse detection tasks. One of its

significant achievements is winning the Waymo Open Dataset challenge in multiple categories,

showcasing its robustness and effectiveness in real-world applications.

The design of OpenPCDet emphasizes modularity and flexibility. It separates data and model

handling with a unified point cloud coordinate system, which simplifies the extension to custom

datasets. This separation allows for a more straightforward integration of new models and

datasets. The toolbox supports a wide range of models, including PointPillar, SECOND, PartA2,

and PV-RCNN, among others. This versatility is further enhanced by the support for distributed

training and testing, enabling the use of multiple GPUs and machines to handle large datasets

efficiently.

Moreover, OpenPCDet includes comprehensive features such as adaptive training sample

selection (ATSS), RoI-aware point cloud pooling, and GPU-based 3D IoU calculation. These

features improve the precision and efficiency of 3D object detection tasks. The project is

continuously updated, with ongoing contributions that add support for new models and datasets,

enhancing its capabilities and keeping it at the forefront of LiDAR-based 3D object detection

technology. This makes OpenPCDet a valuable resource for researchers and developers

working on advanced 3D perception projects.

1. Object Detection:

Using the PointPillar model that was trained on Kitti dataset provided insight on the

preprocessing step of the data and the expected results from an off the shelf analysis algorithm.

The results were good in some cases, but overall sporadic and not fit to perform accurate object

tracking. In general, the finding from this part of the experiment is the following:

● Reasonable results for vehicles.

● No large vehicle detection (i.e. bus).

● More than expected false positive results.

2. Object tracking:

a. Initialization

The initial step in the tracking process is using the Hungarian Algorithm and Kalman Filter for

tracking 3D objects. It begins where objects are detected and their attributes, such as position

(x, y, z), dimensions (length, width, height), rotation, and class, are identified. This information is

then fed into the Kalman Filter (Initialization) block. The Kalman Filter uses these attributes to

initialize the tracker, which outputs the position, initial speed (set to zero), and a unique ID for

each tracked object. This process sets up the framework for subsequent tracking and updating

the state of each object across subsequent frames.

a. Propagation

The second step of the algorithm is propagation, which involves updating and maintaining the

state of tracked objects over time. In this step, "\3D objects detection for frame t+1 detects new

objects and provides their attributes (x, y, z, length, width, height, rotation, and class). These

attributes are fed into the Hungarian Algorithm (Associations) to associate detected objects with

existing tracked objects. Simultaneously, the Tracked objects (using Kalman Filter) from frame t

provide the predicted position, speed, and ID of each tracked object for frame t+1.

The Hungarian Algorithm matches detected objects with existing trackers. If a detected object

matches a tracker, the tracker is updated with the new position and speed. If a detected object

does not match any existing tracker, a new tracker is initiated with the object's position and an

initial speed of zero. Conversely, if a tracker does not match any detected object, it is deleted if

the number of consecutive missed frames exceeds a predefined threshold, for instance the

maximum possible value. This process ensures that the system accurately tracks objects,

updating their states or removing them if they are no longer detected over a specified period.

In essence, We perform a Lidar object detection using DSCAN from point cloud filtered by

removing the road and static objects. Once done we use our identifier tracking algorithm to track

the objects and their evolution during their movement across the rail-crossing. With that

information we orient the bounding box around the points previously classified, this getting

distinct bounding boxes with ID.

4. Preliminary results:

The preliminary results with a pretrained model showed the following:

a. Bad ID tracking for pedestrians

b. No bus tracking

c. Noticeable false detections

d. Reasonable ID tracking for cars.

e. Standard data format for capturing detection and tracking

info from lidar:

Timestamp, label, x, y, z , l, w,h, rotation, object_ID

5. Generating ground-truth for Fine-tuning the DNN model:

The process of fine-tuning the detection model requires understanding the input data from the

sensor at the rail-crossing in order to generate the ground truth data. Below are the steps taken

to generate the ground-truth data:

a. Region of interest: a significant portion of the lidar

pointcloud is not usable as it falls outside of the region of

interest. Therefore the first step is to create boundaries for

the area of interest and use it to crop/filter the data in order

to obtain only what is of interest.

b. Static and dynamic objects separation: To detect moving

objects effectively we must separate them from static

objects (road,infrastructures …). We performed the merge

lidar frames (100x) with an empty intersection to get a

perfect scan of the surrounding.

c. Road extraction: To perform a DBScan and detect each

structure that is moving or not. We need to remove the

road points and thus isolate each group of points. We

notice that the topography of the road can’t be assimilated

to a plan

d. Road pointcloud: The existing road pointcloud is extracted

from the data. In said data, there exists points outside of

the area of interest, data of interest and missing data

based on the delineated area from the rail-crossing.

e. Filling the missing data: Bilinear interpolation is used to

estimate the missing data with sufficient accuracy such

that we have a complete depth map of the road.

f. Static pointcloud segmentation: DBSCAN is employed to

extract the separate static objects in the scene.

g. Camera Detections: Classification of moving object data

from RGB cameras at the rail-crossing

h. Camera domain to Lidar domain: The next step is to move

the ground-truth from the camera domain to the Lidar

domain

i. Camera detections results: Running a robust detection

model on the camera data to generate the detections. It

was found there was a significant number of frames

missing from the Egress camera. Below are the results of

the detections from the camera data.

Camera Ingress Camera Egress

Nb of objects (%) Nb of objects (%)

Car 1619730 97.61 58989 98.49

Bus,Truck 22375 1.35 587 0.98

Person 12219 0.74 180 0.30

Cyclist 3152 0.19 102 0.17

Motorcyclist 1847 0.11 38 0.06

Nb Frames 777 508 36 010

j. The generated dataset:

The dataset consists of two subsets, each obtained through different analysis approaches.

While both subsets are extracted from the same number of frames , in this case, 137,464, the

first was extracted from the dataset by using the object detector on the lidar data directly. The

data was sorted by the size of the pointcloud to make the distinction between the large vehicles

and small cars. This subset contained 1,071,825 small and 231,759 large vehicles. The large

vehicles contributed to 17.8% of the total number of detected objects in this subdataset. Notice

that this approach did not contain people or cyclists as the model failed to detect them.

The second subset was generated using ground-truth from lidar in conjunction with camera

data. The process used in generating this dataset was more restrictive in order to eliminate

noise in the data. Using the same amount of frames, the algorithm generated information for

498,067 cars, 92,559 buses and trucks, 6748 persons and 568 cyclists. The table below shows

the same detailed with their percentage:

Nb of objects (%)

Car 498 067 83.3

Bus,Truck 92 559 15.48

Person 6 748 1.12

Cyclist 568 0.1

You’ll notice that pedestrians and cyclists contributed to less than 1.5% of the dataset, and that

reflected on the use case analysis as will be seen in the coming sections.

k. The DNN model: PV-RCNN, Point-Voxel Feature Set

Abstraction for 3D Object Detection

l. Fine-tuning results: Below are the results of fine tuning the

detection model.

Category Metric bbox bev 3D aos

Small Vehicles AP @0.70 90.2795 53.816 55.5547 75.18

Small Vehicles AP R40@0.70 96.1766 53.5797 58.1811 60.01

Large Vehicles AP @0.70 81.854 68.4443 62.3698 76.65

Large Vehicles AP R40@0.70 86.4675 67.4572 65.4272 81.24

6. Event Tracking

After establishing a strong object detector model through the fine-tuning process described

above, the next step is to establish the bases to identify events through the actions of the

detected and tracked objects. The area of the rail-crossing requires division to logical areas in

order to address the events of interest. The image below identifies the division of the area used

in the analysis in this document.

7. Summary

The use of 3D object detection models based on LiDAR, pre-trained on databases such as

KITTI, Waymo, and NuScenes, provides a foundation for initial detection results. However,

these models exhibit limitations in precision, with some clearly visible objects not detected,

certain classes such as buses or bicycles missing, and poor performance in detecting

pedestrians.

To address these issues, we developed a semi-automatic point cloud labeling tool to create our

own training database, which includes cars, heavy vehicles, pedestrians, and bicycles. This

approach enabled us to test the feasibility of the system for event detection more efficiently.

Our database consists of 137,464 annotated LiDAR frames, containing:

● 498,067 detected cars

● 92,559 detected heavy vehicles

● 568 detected bicycles

● 6,748 detected pedestrians

We trained the PointPillars model on this dataset and achieved significantly improved detection

results compared to the pre-trained models.

Object tracking yielded promising outcomes, as anticipated:

● Larger objects are easier to detect.

● Objects closer to the LiDAR are more reliably detected.

● Pedestrians and bicycles are easily detected when they are in designated areas

(sidewalks, cycle paths), but are often mislabeled as cars when on the road.

We integrated an identifier tracking program with the LiDAR detection model, which allows us to

track vehicles and detect events effectively. The identifier tracking performs well, even in

complex scenarios where a vehicle's detection is intermittent due to obstructions. As long as the

detection gap does not exceed eight frames, the vehicle is usually tracked successfully.

We believe that combining camera and LiDAR data could provide the most precise detection.

This integration would leverage the tracking accuracy of cameras and mitigate the LiDAR's

issues with poor or non-detection, while maintaining the high spatial precision crucial for event

detection.

iv. Proposed Event Cases

The table below lists the identified critical-case events identified for this project:

Description Actor Condition

Jaywalking Pedestrian pedestrian crossing in danger areas

U-turnt Vehicle Vehicle Performing illegal u-turn

Dangerous-Stop Vehicle Vehicle stopping in dangerous area

Queuing Vehicle Vehicles queuing near/on the rail-crossing

The image below shows an example of our analysis in capturing a U-turn event. The process
captured all U-turn in the controlled ground-truth as well as the incidental one:

The table below shows the number of events captured by the analysis compared to the
ground-truth:

Description # GT # Detections

Jaywalking 17 0

U-turnt 5 5

Dangerous-Stop 2 2

Queuing 14 14

The system failed to capture pedestrian data due to the low number of lidar points attributed to
the pedestrian representation in the scene. This may be alleviated with more training involving
pedestrian ground-truth from the scene, but ultimately, a sensor fusion approach that combines
Lidar and camera data.

v. Summary

The use of 3D object detection models based on LiDAR, pre-trained on databases such as

KITTI, Waymo, and NuScenes, provides a foundation for initial detection results. However,

these models exhibit limitations in precision, with some clearly visible objects not detected,

certain classes such as buses or bicycles missing, and poor performance in detecting

pedestrians.

To address these issues, we developed an automatic point cloud labeling tool to create our own

training database, which includes cars, heavy vehicles, pedestrians, and bicycles. Although the

annotations are less precise than manual annotation, this approach enabled us to test the

feasibility of the equipment for event detection more efficiently.

Our database consists of 137,464 annotated LiDAR frames, containing:

● 498,067 detected cars

● 92,559 detected heavy vehicles

● 568 detected bicycles

● 6,748 detected pedestrians

We trained the PointPillars model on this dataset and achieved significantly improved detection

results compared to the pre-trained models.

Object tracking yielded promising outcomes, as anticipated:

● Larger objects are easier to detect.

● Objects closer to the LiDAR are more reliably detected.

● Pedestrians and bicycles are easily detected when they are in designated areas

(sidewalks, cycle paths), but are often mislabeled as cars when on the road.

We integrated an identifier tracking program with the LiDAR detection model, which allows us to

track vehicles and detect events effectively. The identifier tracking performs well, even in

complex scenarios where a vehicle's detection is intermittent due to obstructions. As long as the

detection gap does not exceed eight frames, the vehicle is usually tracked successfully.

We believe that combining camera and LiDAR data could provide the most precise detection.

This integration would leverage the tracking accuracy of cameras and mitigate the LiDAR's

issues with poor or non-detection, while maintaining the high spatial precision crucial for event

detection.

5.Dashboard

a. Purpose

A dashboard is an essential tool that provides a quick overview of the events captured by a

suite of sensors installed at a rail-crossing. The purpose of a dashboard is to display

real/non-real-time data collected by these sensors, allowing traffic engineers to monitor and

manage traffic flow, identify potential issues, and make data-driven decisions. The dashboard

provides a summary of key performance indicators such as traffic volume, average speed, and

number of accidents, helping traffic engineers to identify patterns, trends, and anomalies that

could affect the overall performance of the rail-crossing.

b. Functionality

The functionality of the dashboard falls into the following categories:

i. Time Frame selection: The dashboard offers the ability to select a start

time and end time down to the minute .

ii. Sensor selection: The dashboard offers the ability to select which sensor

to display on the main area of the screen as a primary sensor and which

to display as a secondary sensor to show in the bottom right corner.

iii. Frame navigation: The dashboard offers the ability to navigate between

frames one at a time, or a configurable “skip” number in which a certain

number of frames is skipped between the viewable frames. This number

is configurable, but defaults to 5.

iv. Frame information: The dashboard displays information about the current

sensors, primary and secondary as well as the current frame name or

number.

v. Critical events: The dashboard offers the ability to display critical events

detected in a selected timeframe through two mechanism:

1. Summary: the dashboard summarizes all critical events in one

graphical representation from which the user can obtain general

information about the critical events that happened within the

selected period.

2. List: The dashboard displays specific information about

occurrences of a specific critical event category.

3. Single event: the dashboard displays an individual instance of a

critical event category on the main display with specific annotation

to highlight and localize the detected action in the frame.

vi. Viewability: all panels and dialogue boxes are collapsible/hideable in

order to permit maximum viewability of the frames.

vii. The dashboard for this project is a static demonstration. There is no link

to a database. However, the selection from within the predetermined time

frame is dynamic and the critical events are actual critical events that

were identified in the data for that period.

c. Framework

The underlying technology of the dashboard consists of two components: a front-end and a

back-end.

i. Frontend

Angular was selected as the framework to build the front end as it is very suitable for interactive

applications such as the dashboard. Angular uses a combination of the Typescript, Javascript

and HTML languages.

ii. Backend

The back end for this iteration of the demo was an apache http server modified to serve the

large quantity of data captured by the sensors.

d. Data formats

The dashboard accepts specific formats for the data it depicts. These formats cover the frames

of the sensor, the file types, and the data structure of how the data relate to each other. The

following table shows the different formats for each sensor.

Sensor Format

LiDAR PCD

Thermal PNG, JPG

PTZ PNG, JPG

The file that communicates the temporal property of the data and the relationship between the

different outputs of the different sensor is specified in a JSON format. Appendix A is the

schema expected of the JSON file describing the critical events.

e. Data synchronization

All the sensors are producing frames at a rate of 10 frames per second1. Therefore, the

temporal synchronization between the frames is done by assigning a principal sensor to be

used as a reference. For every sensor, its synchronized frame is then the one with the smallest

temporal difference from the reference frame of the principal sensor.

f. UI Elements
i. Navigation panel

The navigation panel of the dashboard serves two main functions. The first is to provide a

filtration mechanism to target a specific period of events and select the desired sensors for the

primary and secondary display (described below). The second is to control the visibility of the

critical event's selection and viewing found in the timeframe which was selected using the

filtration mechanism. The navigation panel is collapsable for a full screen view of the displayed

frame.

Below is an illustration of the dashboard’s navigation panel.

1 The PTZ sensor is not producing data at a consistent 10 fps rate, but more around 10 to 13 fps.

ii. Control panel

The control panel contains information about the selected sensor for primary display, the

selected sensor for the secondary display and the current frame being displayed. It also hosts

the control buttons that allow navigation between frames. The navigation buttons allow for

movement between adjacent frames, as well as moving by a certain amount of frames forward

or backward. The “skipping” portion of the navigation is configurable with a default value of 5.

The control panel is collapsable for a full screen view of the displayed frame.

Below is a depiction of the control panel.

iii. Main display

The main display refers to the major area of the screen occupied by the frame from the sensor

that was selected as primary in the navigation panel. The purpose of designating a sensor as

primary is to allow its frames to occupy the maximum viewable area for studying, examining or

analyzing. Below, only the primary sensor is displayed (the PTZ camera, in this instance).

iv. Secondary display

As with the primary display, the user can choose a secondary sensor to display its frame in the

bottom right corner of the screen. The secondary sensor display offers another view of the

scene with a different sensor technology to help study actions or events at the rail-crossing. The

user can select the secondary sensor to display from the navigation panel. Due to limitations

within the browser, the user is limited in the choice of the secondary sensor display to the

thermal and RGB sensors. Below is shown an example with the lidar as the primary sensor and

a thermal camera as the secondary sensor in the bottom right corner.

v. Critical Events Display

Apart from displaying synchronized sensor frames, the dashboard can show and navigate

between identified critical events captured by the sensors at the rail-crossing. The dashboard

can do this in two steps through the components discussed herein:

1. Pie-Chart Selector

The event selector is a dynamic pie chart summarizing the critical events recorded at the

rail-crossing. The user can hover over a part of the pie chart to get information about the

number of occurrences of a specific category. The user can also click on any element in the

legend to hide or show the related representation on the graph. This action permits the user to

hide events that overwhelm the display and focus on events that occur less frequently. Below is

shown the pie chart of critical events.

2. Event List

The event list is the second step in exploring the details of a specific critical event. While the pie

chart displays the general information about all the different categories of events within a

timeframe, the event list shows all the instances of a specific category within the same

timeframe. The event list is populated when the user clicks on a section of the pie chart.

When the user selects an event from the list, the dashboard displays the corresponding frame

on the main sensor display, and it highlights the specific event with a circle that is drawn by the

dashboard on the frame. Below is shown an example of a selected event and the corresponding

frame on the main display.

g. Future considerations

Future consideration for the dashboard involve two aspects:

i. Dashboard development:

This aspect involves the introduction of configuration files that will allow the user to customize

the interface in many ways, but mainly, adding sensors, sensor data format, and critical events

categories.

ii. Backend development

This aspect will focus on developing a node js server to manage the connection between the

database containing the metadata , the sensor data repositories and the frontend. In a web

application, a Node.js server can play a critical role in connecting a database of metadata, a

data repository, and a frontend. The server acts as a middleware layer that facilitates

communication between the frontend and the backend systems. The database of metadata can

contain information about the application's data models, event analysis from sensors, and

schema. The data repository, on the other hand, can store the sensor data, such as the frames

that are produced from each sensor, sensor profiles, sensor debug messages, and other

content. The frontend, which was described earlier, provides the user interface for interacting

with the application.

The Node.js server is responsible for processing user requests, fetching data from the database

and data repository, and returning the requested data to the frontend. The server can use

various frameworks and libraries, such as Express.js and Mongoose, to handle HTTP requests,

route the requests to the appropriate endpoints, and interact with the database and data

repository. By connecting the frontend, database of metadata, and data repository, the Node.js

server enables developers to build dynamic, responsive, and data-driven web applications that

can handle large amounts of traffic and user interactions.

Appendix A : JSON Schema for Critical Events

{

"$schema": "http://json-schema.org/draft-04/schema#",

"type": "object",

"properties": {

"1": {

"type": "array",

"items": [

{

"type": "object",

"properties": {

"timestamp": {

"type": "string"

},

"coords": {

"type": "array",

"items": [

{

"type": "integer"

},

{

"type": "integer"

}

]

},

"objID": {

"type": "integer"

},

"caseID": {

"type": "integer"

}

},

"required": [

"timestamp",

"coords",

"objID",

"caseID"

]

}

]

}

},

"required": [

"1"

]

}

