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Executive Summary 

This project aimed to enhance safety at Canadian grade crossings by identifying and mitigating the root 

causes of collisions through the use of sophisticated artificial intelligence and machine vision 

technologies. Initially, a comprehensive literature review was conducted to identify the primary factors 

contributing to grade crossing collisions and to highlight specific unsafe events, such as vehicle U-turns, 

queue buildup on the crossing, and intrusion into the railway right of way. 

The methodology included installing two thermal cameras and two PTZ cameras at a public grade 

crossing to collect data over four months. This data was then analyzed and annotated to develop deep 

learning algorithms for detecting and tracking vehicles and vulnerable road users (VRUs). The detection 

pipeline used raw video feeds from both RGB and thermal cameras to identify vehicles and VRUs, 

tracked their movements to create trajectories, and analyzed these trajectories to detect potentially 

unsafe events at or near the grade crossing. 

The detection results showed excellent performance, with RGB cameras excelling in vehicle detection 

during daytime and thermal cameras performing the best at night. VRU detection was particularly 

effective with thermal images due to the distinctive heat signatures captured. The algorithms developed 

for detecting unsafe events, such as U-turns, queue buildup on the crossing, and jaywalking/intrusions, 

were highly successful, making the overall pipeline a solid proof of concept. 

This comprehensive approach aims to develop a real-time system capable of recognizing unsafe events 

and broadcasting warnings through vehicle-to-everything (V2X) communications to approaching vehicles 

and road users in order to increase their situational awareness, thereby preventing accidents and 

enhancing safety at grade crossings. 
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1 Introduction 

1.1 Background 

There are about 14,000 public and 9,000 private grade crossings along over 26,000 miles of federally 

regulated rail tracks in Canada. From 2012 to 2022, the Transportation Safety Board of Canada (TSB) 

recorded a total of 11,426 rail accidents [1]. Among these accidents, approximately 16% (1,773 

accidents) took place at-grade crossings, resulting in 233 fatalities and 288 serious injuries [1]. This data 

highlights that grade crossings are the second most hazardous type of rail accident in Canada, surpassed 

only by train derailments. Consequently, it is crucial to prioritize the enhancement of rail crossing safety to 

establish a safer rail transportation system. 

This calls for an exploration of emerging and innovative technologies to enhance public safety at railway 

crossings, especially focusing on solutions that have the potential to increase the situational awareness of 

road users approaching at-grade crossings. The emergence of digital and cutting-edge technologies, 

such as multi-modal vision sensors including color (aka RGB), thermal, Light Detection and Ranging 

(LiDAR) and Radio Detection and Ranging (RADAR) cameras, sophisticated machine vision algorithms 

empowered by artificial intelligence (AI) techniques, as well as connected and automated vehicles has 

started to disrupt the ground transportation sector. A recent study by Deloitte [2] suggests that within the 

next 20-25 years, vehicles capable of performing most or all of the driving tasks will become 

commonplace, with many of them equipped with vehicle-to-everything (V2X) communication abilities, 

thereby causing a paradigm shift in ground transportation. 

Therefore, by harnessing these technological advancements, it will become possible to alert road users 

about their proximity to rail crossings, the presence and speed of oncoming trains, and potentially 

hazardous conditions ahead at the crossing. This proactive approach will significantly enhance the 

situational awareness of road users as they approach a grade crossing. Consequently, this heightened 

awareness will ensure a safer passage through crossings, effectively reducing the occurrence of tragic 

accidents at these locations. 

1.2 Project objectives 

The overarching objective of this project was to improve safety at grade crossings by leveraging machine 

vision technologies to prevent collisions. In particular, the project focused on developing sophisticated 

algorithms using deep learning and AI techniques, drawing from real-world data collected at a public 

grade crossing. The intention was to automatically detect and recognize vehicles and vulnerable road 

users (VRUs), as well as identify potentially dangerous situations involving them at or near grade 

crossings. By integrating this capability with secure V2X communications, downstream applications could 

be enabled to warn vehicles and VRUs approaching at-grade crossings, aiming to lower the risk of 

serious accidents at grade crossings. 
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To that effect, the specific objectives of the project included the following: 

• Conduct a comprehensive literature review to identify the root cause and contributing factors of 

grade crossing collisions in Canada. 

• Build a large-scale, representative and multi-modal dataset containing labeled samples of 

vehicles, VRUs, and potentially unsafe events involving vehicles/VRUs based on data captured 

from a real-world public grade crossing. 

• Analyze the collected data to validate the findings from the literature review, while also gaining 

insights into traffic dynamics and unsafe events involving vehicles and VRUs at, through, and 

around the grade crossing. 

• Develop sophisticated machine vision algorithms to automatically detect and recognize vehicles, 

and VRUs, as well as identify potentially unsafe events involving them at, or near the grade 

crossing. 
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2 Review of grade crossing collisions and inspections 

This section presents a study of published and publicly available reports on grade crossing collisions and 

inspections in Canada. The main objectives of this literature review encompassed the following: 

• Review the latest evidence on the root cause and contributing factors of collisions from collision 

investigation reports, while also identifying primary safety concerns at-grade crossings from 

crossing inspection reports. 

• Recognize the potential prospects for novel and emerging technologies, particularly secure V2X 

communications and advanced machine vision systems empowered by sophisticated AI 

techniques, to increase the situational awareness of road users in order to help:  

o mitigate collision risks between vehicles and trains, and 

o improve crossing safety of VRUs such as pedestrians, and cyclists. 

• Summarize the findings to derive use cases for deploying emerging communications and 

machine vision technologies at-grade crossings. 

The literature review focused solely on publicly available investigation reports on grade crossing collisions 

from the TSB as well as publicly available Notices and Orders issued by Transport Canada (TC) 

concerning safety at-grade crossings. 

2.1 Canadian crossing collision reports – causation factors and 

potential countermeasures 

This section provides information on the Canadian grade crossing collisions reviewed. For the purpose of 

this study, a total of 54 investigation reports that were completed and published by TSB since 1994 were 

reviewed. Of the 54 incidents, a brief summary is provided in sections 2.1.1 to 2.1.23, for those where the 

accident may have been avoided or the collision risks may have been mitigated by the use of the 

technology enablers as mentioned in the Introduction section. For each incident summarized, a 

commentary is also included in italics on how the technology enablers could have been leveraged to 

mitigate the collision risks. 

Section 2.1.24 then provides a summary of the 23 crossing collisions. Table 1 in that section presents a 

summary of the collisions reviewed, and Table 2 there presents the causation factors to provide insights 

into the trends. 

 

2.1.1 TSB investigation report # R21H0087 [3] 

Background information: A cutaway van was struck by a VIA Rail passenger train at Smith Falls 

subdivision on 30 June 2021 at 1216 eastern daylight time (EDT) when the driver of the vehicle attempted 

to steer around the fully descended gates at a grade crossing. The vehicle's driver was fatally injured. 
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Causation: Since the crossing was equipped with grade crossing warning devices (GCWDs), the 

sightline was not maintained. This, when combined with the factors such as the acute crossing angle 

(38°) and the limited visibility to the sides of and behind the vehicle cab, caused the train to remain out of 

sight of the driver until it was too close for the driver to avoid the accident. Moreover, the activated 

GCWDs were found to be inconspicuous from a distance – the fully descended crossing gates blended 

into the background and the gate lights had reduced visibility due to the bright daylight conditions. Added 

to these factors was the driver’s familiarity with the crossing where he had likely seldom encountered any 

trains, thereby had likely formed the expectation that there would not be any train at the crossing. A report 

from the University of Calgary [4] that was prepared for TC describes this is a human behavior that 

contributes to non-compliance of drivers with grade crossing stop signs. 

Comments: The use of advanced train detection technology coupled with secure V2X communications 

could have increased the situational awareness of the driver by having the status of the crossing and the 

approaching train displayed on a V2X onboard unit, thereby likely mitigating the risk of the collision. 

2.1.2 TSB investigation report # R20D0013 [5] 

Background information: On 18 February 2020 at approximately 0922 eastern standard time (EST), a 

70-year-old man, while taking a road test with an evaluator onboard, approached a grade crossing under 

reduced visibility conditions due to heavy snowfall and an overcast sky. The driver had significantly 

reduced lower binocular visual field. The car entered onto the railway right-of-way and stopped on the 

tracks while the GCWDs were activated. Constant instructions from the evaluator and a firefighter 

participating in a drill on the other side of the crossing as well as the horn of the vehicle behind were of no 

help for the driver to move forward and clear the tracks. The car was eventually struck by the commuter 

train EXO 182. The driver died while the other passenger of the car sustained serious injuries. 

Causation: The report mentioned that the driver was likely overwhelmed by the many visual and auditory 

stimuli that he was subjected to simultaneously, including the flashing lights and moving gates of the 

activated GCWDs, the nearby firetrucks, the constant instructions and indications from the evaluator 

inside the car and the firefighter outside the car, as well as the horn of the vehicle behind. With a 

significantly reduced lower binocular visual field, the driver was likely confused with all these stimuli, 

especially under the reduced visibility conditions that prevailed during the incidence. 

Comments: With secure V2X communications systems installed at the grade crossing, a V2X onboard 

unit in the vehicle would have received the status of the crossing from as far as 1 km away [6], well before 

the activated GCWDs would be conspicuous. This would have increased the situational awareness of the 

driver, especially under the reduced visibility conditions reported in this specific incident. This extra time, 

coupled with the fact that the V2X onboard unit likely needing less attention to comprehend the crossing 

status than the multiple external stimuli, would have likely helped the visually-challenged driver to react to 

the situation in a timelier fashion, thereby reducing the likelihood of the collision. Even if the driver would 

have found these future warnings confusing, the evaluator would have far more time to safely address the 

situation. 

2.1.3 TSB investigation report # R19T0191 [7] 

Background information: On 13 November 2019 at about 1444 EST, 11 pedestrians including 6 adults 

and 5 children waited on the sidewalk of a double-track crossing equipped with GCWDs for a slowly 
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moving Canadian National Railway (CN) freight train 568 to clear the crossing. Immediately after the 

freight train had cleared the crossing, a faster Metrolinx train (GO 3919) approached the crossing on the 

farther track from the other end. Despite being aware of the activated GCWDs, two pairs of adult and 

children attempted to cross, with one pair making it to the other end, and the other pair getting struck by 

the GO 3919 train sustaining serious injuries. 

Causation: The investigation mentioned that the adult pedestrians attributed the activated GCWDs solely 

to the already passed train CN 568 and did not recognize that it could also indicate the approach of 

another train on the other track. Furthermore, due to the slowly moving CN 568 to the west, they were not 

able to see the GO 3919 approaching from the east on the farther track. Additionally, just before the 

accident, the group had spent approximately 50 min outside. The children were growing cold, causing 

restlessness among the adults. As a result, there was a sense of urgency to return to their destination, 

further heightening the adults' determination to cross the grade crossing. 

Potentially Hazardous Activities: The investigation also discovered the following potentially hazardous 

events at the subject crossing based on a 10 day video recording between 20 June 2020 till 29 June 

2020. The safety risks associated with these activities are equally relevant to other grade crossings, 

especially in urban settings. 

1. Due to the prolonged use of the crossing for switching activities by CN; pedestrians, cyclists and 

motorists were observed to exhibit a tendency to trespass into the crossing while the GCWDs 

were activated. 

2. Vehicles were observed performing U-turns, some within 30 m (98 ft) of the crossing, which is a 

violation of the Highway Traffic Act. 

3. Occasionally, due to traffic lights at a road intersection a short distance ahead, queues were 

observed to build up onto the rail crossing as motorists waited for the traffic lights. 

4. Pedestrians were found to enter/exit the railway right-of-way at the crossing without authority. 

Comments: Using advanced AI technology utilizing multi-modal vision sensors deployed on the roadside 

infrastructure at the crossing, the pedestrians waiting at the crossing could have been reliably detected. 

This information, combined with approaching train location, number, speed and estimated arrival times 

could then be displayed on a large display via secure V2X communications, which would have likely 

increased the situational awareness of the pedestrians in real-time, thereby reducing the likelihood of the 

collision. 

2.1.4 TSB investigation report # R18V0127 [8] 

Background information: On 26 May 2018 at about 1735 pacific daylight time (PDT), a pedestrian on a 

motorized wheelchair was struck by a CN train Q10521-21 travelling westward through Chilliwack, British 

Columbia, when the motorized wheelchair became immobilized on the crossing surface. The accident left 

the pedestrian with fatal injuries and resulted in serious injuries to one of the two motorists who attempted 

to rescue the pedestrian from the collision. 

Causation: As the pedestrian approached the crossing, he stopped the motorized wheelchair in the 

vicinity of the crossing a number of times. When the train neared the crossing, the pedestrian, who was 

stopped with the rear caster wheels on the south rail clear off the flangeway, moved the wheelchair in the 
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opposite direction causing both rear caster wheels to fall into the flangeway gap of the south rail, 

eventually immobilizing the wheelchair. 

Comments: With the use multi-modal machine vision sensors combined with advanced AI technologies 

deployed on the roadside infrastructure at the crossing, such hazardous scenarios could be reliably 

detected. Upon detection, a V2X message could have been broadcast to alert the approaching train of 

the hazardous situation, allowing the train to apply emergency brakes as far as 1km away from the 

crossing, thus decreasing the likelihood or the impact of the collision. 

2.1.5 TSB investigation report # R18T0006 [9] 

Background information: On 9 January 2018 at about 0940, a snowplow, while clearing snow from the 

sidewalk, approached an anti-whistling grade crossing having 4 sets of tracks with a total clearance 

distance of 85 ft. Unaware of the oncoming train, the snowplow operator entered into the crossing just 

before the GCWDs were activated and continued onto the track before being struck by a CN freight train. 

The operator was fatally injured as a result of the collision.  

Causation: When the GCWDs were activated, the gate lights at the southeast quadrant where the 

snowplow was positioned were approximately 90° from the operator’s forward view, while the gate lights 

on the northwest quadrant were pushed to the operator’s peripheral view as he continued onto the track 

(Figure 1 left). This was further aggravated by the restricted sightline of the operator due to the A-pillar 

and the screening on the side windows of the cabin (Figure 1 right). Added to these were factors such as 

the background noise of the snowplow operation and the switching of the operator’s focus between 

clearing snow from the forward at the sidewalk to dumping snow off to the right-hand side. All of these 

combined likely reduced the likelihood of the operator detecting the activated GCWDs and the 

approaching train, or hearing the horn of the approaching train. 

  

Figure 1: Location of the snowplow and viewing angles from the cab to the GCWDs (left image); (right 

image) Photo taken from a driver's seated eye position in the snowplow showing the view toward the 

northwest quadrant of the crossing when the snowplow was positioned adjacent to the southeast 

quadrant crossing warning system mast (the location of the snowplow when the gates began to descend); 

(Source: TSB) 

Comments: With secure V2X communications and advanced train detection technology deployed on the 

roadside infrastructure at the crossing, a V2X onboard unit in the snowplow showing the train approach 

speed and estimated arrival time could have enhanced the situational awareness of the snowplow 
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operator. This is particularly true for the sidewalk snowplows, as these are typically low-ground tight-cabin 

vehicles, thereby possessing higher risks of blocking the operator’s view as mentioned in this specific 

incidence. 

2.1.6 TSB investigation report # R17H0015 [10] 

Background information: At approximately 0732 EST on February 13, 2017, a school bus at the Town 

Line Road public crossing in Mile 121.36 of the Belleville Subdivision, near Colborne, Ontario, was struck 

by Canadian Pacific Railway (CP) freight train 142-12, which was traveling eastward. The school bus was 

immobilized at the crossing, which was equipped with flashing lights and a bell. Before the collision 

occurred, the bus driver and two occupants had already exited the bus and were positioned at a safe 

distance. The collision resulted in the destruction of the bus and the signal mast on the north side, while 

the locomotive sustained minor damage. Fortunately, no injuries were reported. 

Causation: In accordance with the regulations in the Province of Ontario, school buses are required to 

come to a complete stop before railway crossings, even if the warning systems are not active. Adhering to 

this protocol, the school bus driver stopped the bus within 15 ft of the crossing, engaged the parking 

brake, opened the window and door to check for approaching trains, closed them, and released the 

parking brake. The driver then proceeded cautiously onto the crossing, slowing down to check for trains 

once again. Unfortunately, upon entering the crossing, the bus was unable to accelerate due to the rear 

tires lacking traction on the 1.95% inclined road, compounded by accumulated snow. Consequently, the 

bus slid sideways towards the road's edge where the snow was deeper, ultimately becoming immobilized. 

Unaware of the fact that the railway emergency contact information was posted at the crossing, the bus 

driver called the dispatcher of the bus company. The dispatcher dropped all calls, verified the location of 

the bus based on the bus GPS data, followed by consultation with a crossing reference document in an 

effort to find out the exact location of the crossing, the railway track owner and the crossing’s emergency 

contact information. However, by this time the CP freight train 142 approached the crossing and struck 

the empty bus. 

Comments: Immediate notification to the crossing’s emergency contact could have avoided this collision. 

To this end, using machine vision sensors installed on the crossing infrastructure and with the utilization 

of advanced AI technologies, the mentioned scenario could have been reliably detected. Upon detection, 

an automated call to the crossing’s emergency contact could have increased the chances of avoiding the 

collision, especially since a significant period of time elapsed between the school bus becoming 

immobilized on the crossing and the train arrival. 

 

2.1.7 TSB investigation report # R16M0026 [11] 

Background information: At around 0143 atlantic daylight time on July 27, 2016, a tragic incident 

occurred on the Springhill Subdivision when CN freight train Q-12111-26 collided with a pedestrian in a 

wheelchair at the Robinson Street public crossing (Mile 124.43) in Moncton, New Brunswick. The 

crossing was properly equipped with flashing lights, a bell, and gates. Regrettably, the pedestrian 

suffered fatal injuries as a result. 
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Causation: The incident occurred when the pedestrian’s motorized wheelchair became immobilized on 

the crossing. The paved surface of the crosswalk did not extend across the entire width of the sidewalk 

on the east side, creating an empty space. It is likely that the wheelchair was directed toward the 

reflective line on the sidewalk to avoid hitting the post of the grade crossing warning system. The edge of 

the sidewalk led directly to the empty space in the pavement. Since there were no reflective line markings 

on the newly paved section of the sidewalk, the crosswalk did not have sufficient visual cues for the 

pedestrian to navigate it safely at night. When the wheelchair’s right caster wheel fell into the empty 

space in the sidewalk, the wheelchair got stuck in the flangeway gap, immobilizing the pedestrian. 

Comments: This incident bears a close resemblance to the one described in section 2.1.4. Therefore, 

any remarks or comments made regarding that incident are equally applicable to this one. 

2.1.8 TSB investigation report # R13T0192 [12] 

Background information: On 18 September 2013 at about 0832 EDT, a double-decker OC Transpo bus 

left Fallowfield Station on the OC Transpo Transitway, traveling at approximately 43 mph. As it 

approached Mile 3.30 of VIA's Smiths Falls Subdivision, a VIA Rail Canada Inc. passenger train entered 

the crossing. The crossing lights, bells, and gates were activated at the time. The northbound bus, with 

the brakes applied, was moving at around 5 mph when it collided with the train. The collision resulted in 

the front of the bus being torn off. The train, consisting of 1 locomotive and 4 passenger cars, derailed but 

remained upright. The bus had 6 fatalities, 9 serious injuries, and around 25 minor injuries among its 

occupants. No injuries were reported among the train occupants. 

Causation: According to the report's findings, the bus driver was driving at approximately 67.6 km/h, 

which exceeded the posted speed limit of 60 km/h, just before applying the brakes. This excessive speed 

resulted in an increased stopping distance requirement. Initially, the driver did not fully engage the 

brakes, further lengthening the stopping distance. The report suggests that the driver was likely distracted 

by multiple factors, including looking at the video monitor, conversing with passengers, and feeling the 

need to make an announcement to passengers on the upper deck as they were standing. Additionally, 

the report highlights that the view of the activated automatic warning devices was obstructed by trees, 

shrubs, foliage, and roadway signage along the Transitway until the bus was 122.5 m away from the 

crossing. 

Comments: A V2X onboard unit in the bus, capable of displaying the status of the crossing and the 

approaching train as far as 1 km away from the crossing, could have mitigated the visibility issue with the 

activated GCWDs as mentioned in the report, and would likely have enhanced the driver's situational 

awareness. 

 

2.1.9 TSB investigation report # R13E0015 [13] 

Background information: On 24 January 2013 at 0856 central standard time, when a snow-clearing 

road grader had stopped on a public crossing equipped with a passive warning system, likely to adjust the 

grader blades, a CN freight train carrying dangerous goods struck the grader causing fatal injuries to the 

grader operator, heavy damage to the grader, while releasing approximately 106,000 L of crude oil. 
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Causation: The report indicates that the grader operator being likely focused on resetting the grader’s 

blades for snow clearing in the vicinity of the crossing was contributory to him not being able to detect the 

approaching train. Moreover, the effectiveness of the locomotive horn was reduced mainly because, the 

locomotive was being operated in the long hood orientation (i.e., reverse direction), with the horn placed 

in the middle of the locomotive in a recessed location. Additionally, the background noise from the engine 

and the fans inside the closed cab of the grader further reduced the sound level of the horn, resulting in 

an audible warning of that lasted for less than 2 s. 

Comments: As commented on for a similar incident mentioned in Section 2.1.5, having a V2X onboard 

unit installed on the grader, which displays the train's status, could potentially have improved the grader 

operator's situational awareness about the crossing. This is particularly true as the operator was situated 

inside a closed cabin and encountered difficulties in effectively monitoring the visual and auditory signals 

originating from the external environment, which are currently essential for detecting the presence of a 

train. 

2.1.10 TSB investigation report # R13D0001 [14] 

Background information: On January 9, 2013 at approximately 09:50 EST, VIA Rail Canada Inc.'s 

passenger train No. 601 collided with a westbound vehicle that was following another vehicle while 

traversing the public crossing called rang de la Deuxième-Chaloupe, located at Mile 98.79 near Joliette, 

Quebec. The first vehicle narrowly escaped the accident as the driver drove past the crossing mainly 

because he was not able to stop safely at the sightline distance. However, the driver of the second 

vehicle, following closely behind the first vehicle at a similar speed, proceeded onto the crossing and was 

subsequently struck by the train. Both occupants of the vehicle lost their lives in the collision. 

Causation: The thick fog surrounding the crossing significantly diminished the visibility, limiting the 

vehicle drivers’ ability to spot both the oncoming train and the activated crossing signals before reaching 

the crossing. Despite the train horn situated in the middle of the locomotive being sounded, it failed to 

effectively notify both the driver of the initial vehicle and the subsequent vehicle about the train's 

presence. After the first vehicle crossed the intersection, the driver of the second vehicle proceeded onto 

the crossing and tragically collided with the train. 

Comments: As commented on for a similar incident mentioned in section 2.1.2 in which heavy snow 

reduced the visibility, with secure V2X communications deployed at the crossing, a V2X onboard unit 

inside the vehicle displaying the status of the crossing and the approaching train from as far as 1 km 

could have potentially enhanced the situational awareness of the two vehicle drivers even under the 

foggy conditions, thereby reducing the likelihood of the collision. 

 

2.1.11 TSB investigation report # R11T0175 [15] 

Background information: On July 29, 2011 at approximately 10:40 EDT, VIA Rail Canada Inc.'s 

passenger train No. 71, traveling in a westerly direction at a speed of 78 mph on the south main track of 

CN’s Chatham Subdivision, collided with a pickup truck at the Pratt Siding Road crossing equipped with 

passive warning signs situated at Mile 30.62 near Glencoe, Ontario. The impact caused the locomotive 

and all four coaches to derail, with some coaches coming to rest where they were obstructing the north 
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main track. The pickup truck was completely destroyed, and the sole occupant succumbed to his injuries 

in the hospital. Six passengers of VIA Rail Canada Inc. sustained minor injuries. 

Causation: As the report indicates, the pickup truck did not stop, but rather only slowed down at the 

crossing stop sign, and applied the brakes just prior to reaching the crossing upon noticing the train, 

eventually skidding onto the crossing before being struck by the train. Although the sightlines at the stop 

sign were adequate, the driver was not able to get an advance view of the train due to the presence of 

buildings and vegetation along the tracks and in the fields past the sightline distance. Moreover, the 

locomotive horn may not have alerted the driver since the auditory warning of the horn was reduced due 

to the train travelling at 80 mph and the horn being placed near the mid-point of the locomotive. 

Comments: Again, with secure V2X communications and advanced train detection technology deployed 

at the crossing, the driver could have received an advance warning of the approaching train on a V2X 

onboard unit, which could have compensated for the lack of the driver’s advance view of the train due to 

the blocked view past the sightline distances. This would have increased the situational awareness of the 

driver, thus reducing the likelihood of the collision. 

2.1.12 TSB investigation report # R09V0219 [16] 

Background information: VIA passenger train 198 struck a vehicle at the Dorman Road crossing, 

located at Mile 75.68 of the Victoria Subdivision on 14 October, 2009 at 1514 PDT. Following this 

accident, two occupants of the vehicle died while the third suffered serious injuries.  

The level crossing signal lights and bells were activated once the train approached the crossing. At the 

same time, a southbound vehicle was turning west onto Dorman Road. Seeing the train at the last 

minute, the vehicle driver braked and stopped at the level crossing. The vehicle driver backed up a short 

distance and then drove forward again. It was then that the vehicle was struck by the train. 

Causation: The driver likely did not notice the active level crossing signal until the vehicle began to turn. 

Given the orientation of the traffic lights for southbound drivers entering Dorman Road, the closest signal 

to the approach was parallel to the railroad tracks in the driver's peripheral view and was therefore, less 

apparent. Once the driver became aware of the flashing lights, the distance of 14 m separating the 

intersection from the stop line of the crossing was insufficient to allow the driver to stop the vehicle before 

it entered the level crossing. 

Comments: A V2X onboard unit showing the status of the crossing and the approach of the train would 

likely have increased the situational awareness, especially since the visual cues of the activated crossing 

signal was less conspicuous to the driver as stated in this specific incident. 

 

2.1.13 TSB investigation report # R08T0158 [17] 

Background information: On 15 July 2008, at approximately 1525 EDT, VIA passenger train No. 60, 

traveling eastbound on the north main track of the CN Kingston Subdivision, struck a loaded tractor-trailer 

that was immobilized at the public crossing Quabbin in Mallorytown, Ontario. The train could not be 

stopped before hitting the tractor-trailer, even after activating the train brakes. The trailer and the 

equipment it was carrying were destroyed. The tractor driver was uninjured as he had left the cab just 

before the impact. The train driver and four passengers on board were slightly injured. 
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Causation: The collision occurred when the passenger train struck a lowboy truck which was immobilized 

on the crossing that had an excessively steep approach. The lowboy truck was preceded by a pilot 

vehicle whose driver did not notice that the crossing was unsuitable for a low ground-clearance vehicle, 

since there was no advanced signs or warning systems for such crossings. Although the truck remained 

stuck at the crossing for about 7 min before the train’s arrival, none of the vehicle drivers noticed the 

emergency contact posted on the signal bungalow and therefore, were not able to inform the train 

company of the emergency situation. 

Comments: As commented for a very similar incident described in Section 2.1.6, where a school bus was 

immobilized on the crossing surface for quite a while before being struck by a train, automated detection 

of the event via the use of advanced AI technologies deployed at the crossing could have allowed to 

make an automated call to the railway company’s emergency contact. This would have likely reduced the 

risk of the collision, especially since the train arrived 7 min after the vehicle got immobilized on the 

crossing. 

2.1.14 TSB investigation report # R08M0002 [18] 

Background information: On 19 January 2008, at approximately 1105 EST, Chemin de fer de la 

Matapédia et du Golfe inc. freight train 403, traveling westbound on the Mont-Joli subdivision, struck a 

northbound minivan at the Route 291 level crossing, in the municipality of Saint-Arsène (Quebec). The 

minivan spun around and struck the signal mast positioned in the northwest quadrant of the crossing. 

Two occupants were fatally injured and a third person sustained serious injuries. 

Causation: The minivan driver was alerted by the front seat passenger of the presence of the train, but it 

was already too late to avoid the collision. The train struck the minivan because the driver was unable to 

stop his vehicle before it entered the track, or accelerate to clear the track before the train passed. As the 

crossing lights, mounted on the mast below the warning cross, were pointed towards the roads 

approaching the crossing, it is possible that the driver unconsciously determined that the lights were not 

working, and believed that there was no train approaching. The noise that could be heard inside the 

minivan, coupled with the fact that the noise of the whistle and the train was muffled by residences built 

along the road, deprived the driver of additional clues that could have warned him of the imminent arrival 

of the train. 

Comments: A V2X onboard unit showing the status of the crossing and the approaching train would 

likely have increased the situational awareness of the driver approaching the grade crossing, thereby 

reducing the risk of this collision. 

 
 

2.1.15 TSB investigation report # R07D0111 [19] 

Background information: VIA Rail Canada Inc. passenger train No. 35, traveling westbound at 62 mph 

on the south main track of the CN Kingston Subdivision, struck an empty tractor-trailer that was 

immobilized on the 3rd Avenue public crossing at Mile 23.57, near Pincourt/Terrasse-Vaudreuil, Quebec. 

The tractor-trailer was destroyed and the locomotive was damaged. The driver of the tractor-trailer 

suffered minor injuries. The train did not derail and the track was not damaged. 
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Causation: The VIA train No. 35 struck a tractor-trailer that had become stuck on the crossing after the 

rear axle of the trailer became stuck in a snow bank. The configuration, the reduced width and the icy 

surface of the roadway contributed to the immobilization of the tractor-trailer. Transport Quebec and CN 

guidelines for snow removal may be acceptable for most roads and crossings, but they were not 

appropriate for this crossing due to its particular configuration and the snow accumulations. Although the 

tractor-trailer remained immobilized on the crossing for about 4 min and 40 s, the VIA 35 crew did not 

receive an emergency radio message until the train was about 30 s from the crossing, and as such, the 

collision could not be avoided.  

Comments: As commented on in Sections 2.1.13 and 2.1.6 for similar incidents, the time duration of 4 

min and 40 s for which the tractor-trailer remained immobilized on the crossing before being struck by the 

train, was sufficient for an automated emergency call to be placed to notify VIA 35, upon detection of the 

immobilized vehicle via the use of advanced AI technologies based on multi-modal vision sensors 

deployed on the crossing. 

2.1.16 TSB investigation report # R05E0008 [20] 

Background information: On 31 January 2005 at 1310 mountain standard time (MST), VIA Rail Canada 

Inc. passenger train No. 1, was struck by a logging truck traveling south on Secondary Highway 751 at 

the public level crossing at Mile 92.26 of the CN Edson Subdivision. The crossing was protected by 

flashing lights, signals and bells, and by advance warning signals which were placed approximately 104 

m from the crossing. The collision caused the derailment of the train's two locomotives and nine cars. The 

driver of the truck suffered serious injuries and was taken to hospital. Some 6,500 L of fuel spilled from 

the lead locomotive. 

Causation: The logging truck driver apparently did not notice the warning signals or identify the 

approaching train until the collision became impossible to avoid. The driver's physiological condition (he 

was affected by hyperglycemia, fatigue and dehydration) likely impaired his ability to recognize the 

warning signals and the approaching train, and to react accordingly. The driver was in a physical and 

mental condition that made him unfit to drive a vehicle. In addition to the driver's physiological state, there 

were a number of distractions in the cabin that might have prevented him from fully concentrating on the 

road. 

Comments: A V2X onboard unit in the vehicle displaying the status of the crossing signals and the 

approaching train would likely have enhanced the situational awareness of the driver about the crossing, 

especially since the driver had difficulties processing external stimuli and cues to recognize the crossing 

status. 

 

2.1.17 TSB investigation report # R04C0110 [21] 

Background information: On 24 October 2004 at 0138 mountain daylight time, CP freight train 2nd 269-

23, traveling south in heavy foggy conditions towards Lethbridge, Alberta, was struck by the second truck 

in a convoy of three eastbound loaded cattle-liners as they passed the Highway 23 crossing at Mile 69.33 

of the Aldersyde Subdivision. As a result of the collision, a tank car loaded with anhydrous ammonia 

derailed and sustained damage, and five other tank cars were damaged. No product was spilled. As a 
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result of the collision, the train separated, the road tractor was destroyed and a fire broke out. The driver 

of the truck suffered serious injuries and his assistant lost his life. The railway track was damaged for a 

distance of approximately 2,060 ft (655 m). 

Causation: The severe foggy conditions prevented the observation of the railway crossing ahead signal, 

the railway crossing warning system and the reflective signs affixed to the cars of the train that occupied 

the crossing. The urge to stay with the convoy to be able to benefit from the experience of the other 

drivers may have led the driver of the second truck to continue driving at a speed inappropriate for the 

prevailing visibility conditions. Moreover, the truck was not inspected before the trip to ensure the 

effectiveness of it’s trailer brakes, and was found to have no effective brakes as concluded by the 

inspectors. After approaching the crossing at a speed of 20 km/h, the truck could not have been stopped 

before the crossing, even if the driver had been alert and the trailer brakes had worked with all due 

efficiency on a road surface in good condition, given the visibility conditions (approximately 9 m) that 

existed at the time of the accident. 

Comments: A V2X onboard unit inside the truck showing the status of the crossing and the information 

about the approaching train as far as 1 km away from the crossing would have compensated for the poor 

visibility conditions that were prevailing in this specific incident, thereby increasing the chance of avoiding 

the collision. 

2.1.18 TSB investigation report # R04H0009 [22] 

Background information: On 28 June 2004 at 1836 EDT, VIA Rail Canada Inc. passenger train No. 49, 

travelling westward at 93 mph, struck an empty 10-ton dump truck at the public crossing at Mile 17.88 of 

the Smiths Falls Subdivision, near Munster, Ontario. The truck was destroyed, and the occupant was 

fatally injured.  VIA crew members and train passengers were not injured. 

Causation: Absence of visual or audible cues to alert the driver of the presence of the approaching train 

caused the collision. The sharp angle of the crossing, combined with the inability to look back through the 

rear window since it was a dump truck, prevented the driver from seeing the approaching train. Due to the 

normal level of ambient noise in the truck cab, the driver was only able to hear the train horn for about 1 s 

before the train entered the crossing. 

Comments: Increasing the situational awareness of the driver via the use of V2X onboard unit displaying 

the status of the train and the crossing could have compensated for the blocked view of the driver and 

likely have reduced the risk of the collision. 

 

2.1.19 TSB investigation report # R02T0149 [23] 

Background information: On 13 May 2002, at approximately 0915 EDT, a VIA Rail Canada passenger 

train (No. 52) struck an immobilized tractor-trailer at the public crossing at Mile 181.71, Kingston, Ontario. 

Though the train crew had applied the brakes, the train was unable to stop before the collision. While the 

truck occupants exited the tractor and escaped uninjured, the locomotive engineer suffered minor injuries.  

Causation: The TSB report indicates that the accident happened at a crossing where low clearance 

trailers had a high probability of grounding out. Also, the geometry of the crossing, including the 
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intersection of the two superelevated tracks through the road's vertical curvature and the irregularity of the 

surface profile, created a hazard for low-clearance trailers. It is worth mentioning that there was no 

indication that the crossing would present a risk, though there were bump signs installed near the grade 

crossing.  

Comments: Although an emergency number was stenciled on the crossing sign, none of the vehicle 

occupants noticed the number and as such, no emergency call was made to the railway company. As 

mentioned in similar incidents described in Sections 2.1.6, 2.1.13, 2.1.15, upon detection of the vehicle 

stuck on the crossing surface via the use of advanced AI technologies based on multi-modal vision 

sensors deployed on the crossing, an automated call to the emergency number could have been placed, 

thus reducing the likelihood of this type of incident. 

2.1.20 TSB investigation report # R00C0159 [24] 

Background information: On 19 December 2000, at approximately 2037 MST, two consecutive 

accidents occurred at a passive crossing of the Waterways Subdivision involving a freight train (Nº 590-

19) from Athabasca Northern Railway Ltd. and two ground vehicles, when the freight train was travelling 

southward over the secondary Highway 881 crossing at Mile 138.07. There was no illumination in the 

neighborhood of the crossing when the first accident happened, and the 21st car of the train was struck by 

a semi-trailer truck. The second fatal accident occurred approximately 3 h later (while the train was still 

occupying the crossing) and there were no warning devices/signage to show that the crossing was still 

occupied by the train. The second accident occurred between the standing freight train and a truck and 

left the driver of the truck fatally injured. 

Causation: The investigation revealed that the illumination conditions in the general vicinity of the 

passive crossing were not sufficient for drivers to detect the presence of the train on the crossing, which 

contributed to both accidents. The report indicates that though the driver of the second truck was on-duty 

for a long number of hours (76.5 including a one day of rest) during the week that preceded the accident, 

it does not really mention that fatigue was the primary cause behind any of the two accidents. However, It 

was indicated that long working hours might affect driver’s performance. 

Comments: The use of emerging train detection technology together with V2X communications could 

have mitigated the risk of this accident, as the status of the train could be displayed on a V2X onboard 

unit in the vehicle, thereby compensating for the visibility issues due to the poor lighting conditions that 

prevailed in this specific incident. 

 

2.1.21 TSB investigation report # R99T0298 [25] 

Background information: On 23 November 1999, at approximately 1845 EST, a CN freight train (No. M-

321-21-22), travelling westward on the north main track, struck an abandoned tractor-trailer at a farm 

level crossing at Mile 292.59 of the CN Kingston Subdivision and dragged it for approximately 2,000 ft 

along the track. A VIA Rail passenger train No. 68 (VIA 68), travelling eastward on the south main track, 

struck the debris and derailed, just before the freight train had come to a halt. Although there were no 

fatalities (only minor injuries), some important damages were reported, including 6800 L of diesel that 

spilled from the VIA locomotive and burned, and 4550 L that spilled from the lead CN locomotive. 
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Causation: The report concluded that the truck driver did not take appropriate actions when his tractor-

trailer got stuck in the wooden ties of the track. It was also reported that if the truck driver had been aware 

about the emergency communications tools available onsite, the accident would never have happened. 

The report also indicated that the signage and maintenance of many existing private and farm crossings 

were of a lower standard than those of public road crossings. 

Comments: This incident is very similar to the ones reported in sections 2.1.6, 2.1.13, 2.1.15, 2.1.19, and 

therefore, the comments made on those incidents equally apply to this one. 

2.1.22 TSB investigation report # R99S0100 [26] 

Background information: On 9 November 1999, at approximately 0900 EST, a VIA Rail Canada Inc. 

passenger train (No 85) fatally collided with a dump truck on Fourth Line Road in the community of 

Limehouse, Ontario. The locomotive and four passenger coaches derailed on the main track, some of 

them were extensively damaged, and the truck driver sustained fatal injuries. 

Causation: The report indicates that the visual cues available to the truck driver were not sufficient to see 

the approaching train through the window and were partially obstructed by the roof pillar and side mirror.  

Comments: The use of advanced train detection technology coupled with V2X communication systems 

deployed on the crossing would have likely increased the situational awareness of the driver by having 

the status of the train displayed on a V2X onboard unit as far as 1 km away from the crossing, thereby 

mitigating the risk of such collisions. 

2.1.23 TSB investigation report # R99H0009 [27] 

Background information: At approximately 0804 EDT on 14 July 1999, a VIA Rail Canada Inc. train 

(No. 2) struck the rear portion of an empty tractor-trailer at a private crossing near Hornepayne, Ontario. 

Three people were seriously injured and eight were taken to the Hornepayne community hospital. 

Causation: The report indicates that because of the noise inside the truck's cab, the driver did not hear 

the train whistle nor observed the approaching train. The report also stated that if the driver had stopped 

at the stop sign and looked down the track, he would have been able to spot the train, considering the 

visual cues and the presence of a stop sign at the Becker crossing. 

Comments: Use of V2X communications to notify the driver about the status of the train would have 

provided greater visibility to the driver, and reduced the likelihood of this type of accidents. 

 

2.1.24 Summary of the crossing collisions 

The 23 crossing collisions reviewed are summarized in Table 1. The collision reports demonstrated a 

variety of contributing factors. Table 2 summarizes eight contributing factors involved in the collisions, 

while also listing the total number of fatalities and serious injuries incurred in the collisions where the 

corresponding factor had a role to play. Caution is advised when interpreting the casualty numbers 

associated with the factors, as the Table indicates the potential involvement of multiple factors in a 

collision. 
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Table 2 shows that human factors (e.g., mis-judgement of the situation at hand, negligence, failing to 

follow instructions etc.) were involved with other factors in almost all (18 of 23) of the collision reports. The 

exceptions were for a few where crossing geometry (4 of 23), track flangeway gap (2 of 23), coupled with 

weather elements (e.g., snow/ice, 2 of 23), were exclusively contributory to the incidents. In some 

collisions reviewed, the fact that the driver’s view was blocked due to vehicle design (e.g., cutaway van, 

dump truck) or some transitory obstructions (e.g., roadway signage blocking the view of the crossing 

signal from a specific spot on the road approach) was also cited to be contributory, though these did not 

cause any instance of sightline blocking. Visibility issues due to adverse weather and illumination 

conditions were involved along with other factors in 4 of the 23 collisions reviewed. Interestingly, in 4 out 

of the 23 collisions reviewed, the level of auditory warning from the locomotive horn was found to be 

insufficient and was cited as a contributing factor. 
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Table 1: Summary of the crossing collisions reviewed. Best viewed when zoomed in. 

Report 
section 

TSB  
report # 

Crossing 
location 

Province Year Mon. 
Local 
time 

Crossing 
GPS 

coordinates 
# Tracks GCWDs 

GCWD  
activation  

prior to train 
arriving at 
crossing 

Road-
way 

layout 

Side-
walks 

Crossing 
angle 

Traffic 
posted  
speed 
limit 

Vehicle 
speed(s) 

Involved  
vehicle(s)  

Train 

Train  
speed  

at time of 
collision 

Weather Comment 

2.1.1 R21H0087 Rural ON 2021 6 1216 
45.198527 
-75.816216 

single 

flashing 
light 
bell 

gates 

35 s 
(18 s due to 

hill) 

2-lane  
asphalt 

no 38°  80 km/h 20 km/h 
2017 GMC 

3500  
Cutaway van 

Passenger 
85 mph 

(137 
km/h) 

27.9°C 

The vehicle 
then started 
to descend 
the hill, which 
had an 
average 
gradient of 
4% before 
levelling out 
about 475 ft 
from the 
crossing. 

2.1.2 R20D0013 Urban QC 2020 2 922 
45.546107 
-73.697588 

double 

flashing 
light 
bell 

gates 

23 s 
2-lane  
asphalt 

yes 15° 30 km/h 0 km/h 
2016 4-door  
passenger 

sedan 
Passenger 

42 mph 
(68 km/h) 

−10°C 
overcast, 
snowing 
heavily 

  

2.1.3 R19T0191 Urban ON 2019 11 1444 
43.459226 
-80.482799 

double 

flashing 
light 
bell 

gates 

Not reported 
4-lane  
asphalt 

yes <80° 50 km/h n/a Pedestrians Passenger 
not 

reported 
 -4.9°C 

Pedestrians 
positioned on 
track >5 min 
prior to 
impact. 

2.1.4 R18V0127 Urban BC 2018 5 1735 
49.166952 

-121.935351 
single 

flashing 
light 
bell 

gates 

Not reported 
2-lane  
asphalt 

yes 74° 50 km/h n/a 
Motorized  
wheelchair 

Freight  
47 mph 

(76 km/h) 
18.6°C 

Wheelchair 
positioned on 
track ~ 1 min 
prior to 
impact. 

2.1.5 R18T0006 Urban ON 2018 1 940 
42.983416 
-81.23817 

quad 

flashing 
light 
bell 

gates 

29 s 

4-lane  
asphalt  
island  

median 

yes <90° 40 km/h 1.4 km/h 

Bobcat S130 
skid-steer 

loader  
equipped with 

a blower 

Freight  
44 mph 

(70 km/h) 
−4°C 

Vehicle 4.6 m 
beyond the 
crossing mast 
when the 
gates began 
to descend. 

2.1.6 R17H0015 Rural ON 2017 2 732 
43.988819 
-77.902564 

single 
flashing 
lights 
bell 

33 s 
2-lane  
asphalt 

no 
69° N 
75° S  

50 km/h 0 km/h 

2008 
International 

PB10500  
school bus 

(immobilized) 

Freight  
52 mph 

(84 km/h) 
−3°C 

snowing 
  

2.1.7 R16M0026 Urban NB 2016 7 143 
46.089923 
-64.780313 

single 

flashing 
light 
bell 

gates 

Not reported 
2-lane  
asphalt 

yes 34° 50 km/h n/a 
Motorized  
wheelchair 

Freight  
30 mph 

(48 km/h) 

19°C 
mostly 

overcast 

Train 
engineer 
viewed 
wheelchair 27 
s prior to 
impact. 

2.1.8 R13T0192 Urban ON 2013 9 848 
45.302801 
-75.734072 

single 

flashing 
light 

signals 
bell 

gates 

49 s 

2-lane  
asphalt 

(dedicate
d  

transitway
) 

no 50° 60 km/h 4.8 mph  

ADL E500 
double-
decker  

transit bus 

Passenger 
43 mph 

(70 km/h) 

14°C 
sunny,  
clear 

visibility 

Vehicle 
initiated 
emergency 
brake prior 
from crossing 
at speed of 
67.6 km/h. 
Crew 
members first 
noticed the 
bus travelling 
northward 
toward the 
crossing 
when the 
train was 
approximatel
y 600 ft (183 
m) from the 
crossing 
Gates fully 
horizontal for 
at least 26 s 
before the 
accident 

2.1.9 R13E0015 Rural SK 2013 1 856 
53.010506 

-108.931129 
single 

crossbuck
s 

stop sign  
(train 

horn/bell) 

Not reported 
2-lane  

crushed 
stone 

no <90° 50 km/h 
stationary  
on track 

2009 Volvo 
Model G970  
road grader 

Freight  
37 mph 

(60 km/h) 

 -17°C 
overcast, 

good 
visibility 

Locomotive 
horn was 
sounded 4 
times starting 
approximatel
y 1,780 ft and 
ending 718 ft 
from 
crossing. 

2.1.10 R13D0001 Rural QC 2013 1 950 
46.058696 
-73.396638 

single 

flashing 
light 

signals 
bell 

~8.25 s A 
2-lane  
asphalt 

no 35°/145° 80 km/h 
50 km/h 
60 km/h 

#1 Passenger 
vehicle 

(leading) 
#2 SUV 
(struck) 

Passenger 
60 mph 

(97 km/h) 

 -3°C 
heavy 

fog, road 
wet 

Visibility 
approximatel
y 150 to 200 
ft in the 
vicinity of the 
crossing, 

2.1.11 R11T0175 Rural ON 2011 7 1040 
42.715926 
-81.751986 

double 

SRCS 
stop sign 
crossing 
ahead  

No stop 
line  

~22 s B 

gravel 
(paved 
near 

crossing) 

no 90° 50 km/h not stated Pick-up truck Passenger 
80 mph 

(129 
km/h) 

29.5°C   

2.1.12 R09V0219 Urban BC 2009 10 1514 
49.198055 

-123.984844 
single 

flashing 
signals 
bells 
cross 
bucks 

25 s 
2-lane 
asphalt  
(arterial) 

no 90° 50 km/h not stated 1990 Sedan Passenger 
45 mph 

(72 km/h) 
15°C   

2.1.13 R08T0158 Rural ON 2008 7 1525 
44.479969 
-75.885458 

double 

flashing 
lights 
bell 

gates 

Not reported 
2-lane  
asphalt 

no 65° 50 km/h 
stationary  
on track 

1997 Mack 
CH613 
48-foot, 

model TC3 
(lowboy)  

(tractor/trailer 
combination 

60 ft) 

Passenger 
83 mph 

(134 
km/h) 

21°C 
part 

cloudy, 
vis 24 km 

Train crew 
observed 
obstacle prior 
to event. 
Train 
travelled 
2,409 ft from 
the time 
when the 
brakes were 
applied to the 
point where it 
struck the 
truck 
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2.1.14 R08M0002 Rural QC 2008 1 1105 
47.911869 
-69.431832 

single 

flashing 
light 
bell 

(cantileve
r) 

33 s 
2-lane  
asphalt  
(arterial) 

no 90° 50 km/h 
50 km/h  

(est) 
Minivan Freight  

 51 mph 
(82 km/h) 

 -6°C 
bright,  

thin cloud, 
visibility 

good 

  

2.1.15 R07D0111 Urban QC 2007 12 1505 
45.387168 
-73.991254 

double 

flashing 
light 
bell 

gates 

Not reported 
2-lane  
asphalt 

no <90° 50 km/h 
stationary  
on track 

1999 Volvo 
VNL64  

w/ Manax 
trailer (53 ft) 

Passenger 
74 mph 

(119 
km/h) 

 -11°C 
clear, 
snow 

cover/icy 
road  

Truck 
immobilized 
on crossing 3 
min 40 s 
before 
collision. 
Rear 
undercarriage 
of the trailer 
got stuck on 
a large snow 
bank. Winter 
storm 
previous day 
(32 cm) 

2.1.16 R05E0008 Rural AB 2005 1 1310 
53.644212 
-115.58228 

double 

flashing 
lights 
bell 

gates 

 23 s 
2-lane  
asphalt 

no 90° 

 100 km/h 
(reduced 
50 km/h 
at 384 m 

from 
crossing) 

~50 km/h 

1994 
Freightliner  

w/40-foot log 
trailer 

(Peerless 
Page HRL 
Tri-Dem) 

Passenger 
70 mph 

(113 
km/h) 

 -5°C 
clear, 
sunny 

Locomotive 
horn for 
approximatel
y 15 s before 
entering the 
crossing. The 
bell was also 
sounded. 

2.1.17 R04C0110 Rural AB 2004 10 138 
50.572085 

-113.538025 
single 

flashing 
light 

signals 
bell 

Not reported 
2-lane 
gravel 

no 82° 100 km/h unknown 
Class 8 

Cattle-liner  
truck (loaded) 

Freight  
45 mph 

(72 km/h) 

 -4°C 
thick fog, 
visibility 9 

m 

Yellow AWS 
sign (287 m 
prior to 
crossing) 
X painted on 
pavement 
(287 m prior 
to crossing) 

2.1.18 R04H0009 Rural ON 2004 6 1836 
45.118361 
-75.870432 

single 
reflective 
crossing 

sign 

locomotive 
horn (whistle) 
sounded for 
10 s before 

crossing 

2-lane 
gravel 

no 52° 50 km/h 16 km/h 

1989 Ford 
LNT  

8000 dump 
truck 

Passenger 
93 mph 

(150 
km/h) 

20°C 
partly 

cloudy, 
clear 

visibility 

  

2.1.19 R02T0149 Rural ON 2002 5 915 
44.230116 
-76.632199 

double 

flashing 
lights 
bell 

gates 

Not reported 
2-lane 
gravel 

no 80° 50 km/h 
stationary  
on track 

1994 
Freightliner, 

model FL 120  
w/ 48-foot, 

low-boy 
trailer (TC3) 

Passenger 
77 mph 

(124 
km/h) 

8°C 
overcast, 
lt rain, vis 
11.2. km 

Train had 
travelled 
2,409 ft from 
the time 
when the 
emergency 
brakes 

2.1.20 R00C0159 Rural AB 2000 12 2037 
55.006129 

-111.731985 
single 

flashing 
lights 
bell 

Not reported 
2-lane  
asphalt 

no 67° 80 km/h 
ditched 
68 km/h  

Truck#1: 
1981 

Kenworth, 
w/trailer 
Truck#2: 

1997 
Freightliner 
w/B-train 

Freight  
23 mph 

(37 km/h) 

 -20°C 
clear, 
snow 

cover/icy 
road 

truck #1: 200 
m from the 
crossing saw 
train/braked/d
itched truck 
Warning 
railway track 
now in use 
sign (325 m 
prior to 
crossing) 
Advance 
warning sign 
(205 m prior 
to crossing) 

2.1.21 R99T0298 Rural ON 1999 11 1845 
43.882047 
-78.704529 

double none Not reported 
1-lane 

dirt  
no n/a n/a 

stationary  
on track 

Class 8 
Highway 
tractor w/ 

trailer 

Freight 
Passenger 

59 mph 
(95 km/h) 

12.5°C   

2.1.22 R99S0100 Rural ON 1999 11 900 
43.630565 
-79.995784 

single 

flashing 
lights 
bell 

signage 

24 s 
2-lane 
asphalt 

no 78° 80 km/h ~80 km/h 

1975 
International 

Paystar  
dump truck 

Passenger 
63 mph 

(101 
km/h) 

10°C 
clear 

visibility 
  

2.1.23 R99H0009 Rural ON 1999 7 635 
49.201136 
-84.669255 

single 

stop sign 
danger 

high 
speed 
trains 
(3 m 

before 
crossing) 

Not reported 
1-lane 

dirt  
no <90° 30 km/h 15 km/h 

1990 
International 

Sleeper 
w/ log trailer 

(~50ft) 

Passenger 
53 mph 

(85 km/h) 

25°C 
clear 

visibility 

Average 
clearance 
time 23 s 
(loaded) and 
17 s (empty) 
trucks (w/ 
vehicle 
stopped 8 m 
from the track 
until it was 
clear  
at a point 8 m 
on the 
opposite side 
of the track) 

  
A NRC calculation of time using TSB reported GCWS visibility at 600 ft 
B NRC calculation of time using TSB reported GCWS visibility at1000 ft 
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Table 2: Summary of the factors contributing to crossing collisions. Caution is advised when interpreting 

the casualty numbers, as multiple factors were potentially involved in a collision. 

Collision contributing factors 
No. of 
fatal 

injuries 

No. of 
serious 
injuries 

Reference to the collisions 

Human factors 21 18 2.1.1, 2.1.2, 2.1.3, 2.1.5, 2.1.8, 
2.1.9, 2.1.10, 2.1.11, 2.1.12, 
2.1.13, 2.1.14, 2.1.16, 2.1.17, 
2.1.18, 2.1.20, 2.1.21, 2.1.22, 

2.1.23 

Crossing geometry (e.g., steep 
approach gradient, uneven crossing 
surface, acute crossing angle) 

2 0 2.1.1, 2.1.6, 2.1.7, 2.1.13, 2.1.15, 
2.1.19 

Track flangeway gap 2 1 2.1.4, 2.1.7 

Visibility issues due to adverse weather 
conditions (e.g., heavy snowfall, dense 
fog) and poor lighting conditions 

5 2 2.1.2, 2.1.10, 2.1.17, 2.1.20 

Weather elements (e.g., snow, ice) 0 0 2.1.6, 2.1.15 

Driver's view blocked due to vehicle type 
(e.g., cutaway van, dump truck), and 
other obstructions (e.g., building, 
roadway signage). This does not include 
any instance of sightline blocking. 

10 9 2.1.1, 2.1.5, 2.1.8, 2.1.18, 2.1.22 

Audibility issues with locomotive horn 5 1 2.1.9, 2.1.11, 2.1.14, 2.1.18 

Driver health issues (both physical and 
mental) 

1 1 2.1.2, 2.1.16 

 

2.2 Canadian crossing inspection reports – Notices and Orders 

This section provides information on the Notices and Orders [28] issued by TC to railway companies, 

railroad authorities, or individuals following the identification of conditions or hazards during routine rail 

safety inspections. These conditions or hazards had the potential to cause harm to individuals, damage 

property, or could have had an impact on the environment. A Notice and Order was (and is) revoked once 

the immediate threat to safety due to the identified condition or hazard was (and is) removed to the 

satisfaction of a rail safety inspector. 

For the purpose of this study, a total of 92 Notices and Orders were reviewed that were issued between 

2009 and February 2024. A brief summary of those that were related to safety concerns at-grade 

crossings are presented below. 
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2.2.1 Issued to: CP; issue date: 2022-12-09; revocation date: 2022-12-19  

Condition or hazard observed: Due to a CP lead locomotive stopping on a public crossing and blocking 

it for a prolonged period of time, pedestrians were observed to take risks by crossing between the 

stopped railcars, which could have led to a person being injured. 

Order: CP was ordered to physically verify that the train was clear of any pedestrians before allowing the 

train to proceed. 

2.2.2 Issued to: CP; issue Date: 2022-06-21; revocation Date: 2022-06-23 

Condition or hazard observed: Vehicles, especially larger vehicles, were observed to queue up on the 

crossing at Mile 95.92 of the CP Cascade Subdivision due to the limited vehicular storage space and a 

narrow road approach. This posed an immediate risk of vehicles being struck by railway equipment or 

oncoming traffic. 

Order: CP received an order to provide a stop and then proceed on the crossing until evidence of 

vehicles queuing over the crossing no longer existed. 

2.2.3 Issued to: Municipality of Merrickville-Wolford and the United Counties of 

Leeds and Grenville; issue date: 2021-09-08; revocation date: 2021-12-03  

Condition or hazard observed: Vehicles, especially larger vehicles, were observed to queue up on the 

crossing on Kilmarnock Road due to the limited vehicular storage space and a narrow road approach. 

This posed an immediate risk of vehicles being struck by railway equipment or oncoming traffic. 

Order: The Municipality of Merrickville-Wolford and the United Counties of Leeds and Grenville was 

issued an order to limit access to the road section leading to the crossing, including the adjacent 

intersection of County Road 17 (Jasper Road), exclusively for vehicles shorter than 10 m (e.g., medium 

single unit trucks), until any evidence of vehicles forming a queue over the crossing no longer existed. 

2.2.4 Issued to: CN; issue date: 2016-02-19; revocation date: 2017-07-07 

Condition or hazard observed: Prolonged blocking of a public crossing by CN trains at Mile 8.8 of the 

CN Halton subdivision at Goreway Drive in Brampton, Ontario, aggravated by CN’s reluctance to promptly 

address the issue, resulted in dangerous driving behaviour at the crossing. Additionally, this situation 

could also cause delays for emergency vehicles passing through the crossing, potentially causing harm to 

an individual. 

Order: CN was ordered to guarantee that every train arriving at Brampton Intermodal Terminal was 

granted an unobstructed route, with all switches aligned directly to their designated yard track. This was 

to enable the trains to proceed seamlessly until the crossing was clear. Additionally, CN was to provide to 

TC a weekly download of the event recorder data from the GCWDs at the subject crossing. 
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2.2.5 Issued to: CN; issue date: 2015-07-02; revocation date: 2015-08-28 

Condition or hazard observed: There was an imminent threat of individuals getting struck by trains in 

the Souligny area of the Longue-Pointe Spur location at Quebec as a large number of intruders were 

observed to cross the tracks, slipping through the holes in the fencing. 

Order: CN received an order to reintroduce the whistling policy at the following six grade crossings in the 

Rue Souligny area of the Longue Pointe Spur: 

• Avenue Georges V (4.98) 

• Avenue Hector (5.08) 

• Boulevard Pierre Bernard (5.58) 

• Rue Des Ormeaux (5.78) 

• Avenue Lebrun (5.94) 

• Rue Honoré Beaugrand (6.39) 
 

2.2.6 Issued to: CP; issue date: 2015-1-19; revocation date: 2015-12-03 

Condition or hazard observed: Due to high density of pedestrian traffic at the location of a public grade 

crossing situated at 3rd Avenue – CP Mile 0.10, there was a heightened risk of pedestrians exhibiting 

potentially dangerous crossing activities, including going through the crossing while it was deployed, 

running in front of approaching trains, or even crawling beneath the railway equipment of stopped trains 

on the crossing. The situation was further exacerbated by trains stopping on and past the crossing island 

circuit due to crew changes, thereby causing the GCWDs to remain activated for a prolonged period of 

time. 

Order: CP was ordered to ensure that no eastbound railway equipment blocked the grade crossing 

except for an emergency, while also making sure that crew changes took place at the 2nd Avenue – CP 

Mile 0.21 Thompson Subdivision in a manner that it did not cause the crossing to be activated 

continuously. Additionally, no eastbound railway equipment was to be operated past this crew change 

location after stopping there until there was a DTMF crossing gate activation following a wait of at least 25 

s since the crossing gate had become parallel to the ground. Moreover, CP and the city of Kamloops, BC 

were ordered to deploy at least two flag persons on each side of the tracks at the grade crossing holding 

stop signs when the GCWDs were activated to make sure that no pedestrian could pass through the 

grade crossing. 

2.2.7 Issued to: Resort Municipality of Whistler, BC; issue date: 2013-05-07; 

revocation date: 2013-05-30  

Condition or hazard observed: Queuing over a public crossing at Squamish Subdivision was observed 

due to a newly added 3-way stop. This significantly increased the risk of a vehicle-train collision, 

particularly since the sightlines for traffic approaching the crossing travelling north-west were not clear. 

Order: The resort municipality of Whistler, BC was ordered to cease the use of the 3-way road crossing 

and not allow any motorists, pedestrians, and cyclists to use the railway crossing from 7:00 am until 6:30 

pm throughout the week except for statutory holidays, unless a qualified flag-person was provided at the 

south vehicle stop bar at the crossing. The flag person, upon activation of the GCWDs, would prevent 
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traffic, cyclists, and pedestrians from advancing onto the crossing from the south until the train had 

completely cleared the crossing. 

2.3 Rail safety use cases 

By examining the crossing collision scenarios outlined in Section 2.1 and the hazardous conditions 

observed at-grade crossings as outlined in section 2.2, the primary instances of risky situations and 

potentially dangerous actions exhibited by motorists, cyclists, and pedestrians as they traversed through 

the railway crossings were identified. This analysis serves to mirror actual rail safety concerns in the real 

world, thus shaping the rail safety use cases and also establishing the basis for data collection, analysis, 

and assessment undertaken in this project. 

Sections 2.3.1 to 2.3.6 below present six rail safety use cases, highlighting how various technology 

enablers, including secure V2X communications, advanced train detection, and AI-empowered machine 

vision sensors deployed on roadside infrastructure at-grade crossings, could reduce collision risks, 

increase situational awareness of road users, and thereby enhance safety at-grade crossings. 

2.3.1 Pedestrian approaching/waiting at a crossing 

Use case scenario: This pedestrian-approaching/waiting-at-a-crossing use case scenario was derived 

directly from the crossing collision described in section 2.1.3, specifically addressing the circumstance 

where pedestrians approach a grade crossing, or wait at a crossing for the train(s) to clear the crossing. 

Given that virtually all collisions involving a moving train and pedestrians typically result in fatalities and/or 

serious injuries, as was the case in the referenced collision, enhancing the pedestrians' situational 

awareness using technology enablers will contribute positively to enhancing pedestrian safety at-grade 

crossings. 

Technology enablers to enhance crossing safety: Pedestrians approaching or waiting at-grade 

crossings can be detected and tracked using advanced AI technologies based on multi-modal vision 

sensors installed on the roadside infrastructure at the crossing, which can adapt to varying weather and 

lighting conditions. Upon detection of pedestrians, information about the number of approaching trains, 

train speed, estimated arrival time as obtained through advanced train detection systems can be 

presented on a large display board located on sidewalks via secure V2X communications. Alternatively, 

the information can be directly transmitted to pedestrians using vehicle-to-pedestrian (V2P) technology. 

The goal is to provide real-time updates about the crossing dynamics to pedestrians in an effort to 

enhance their situational awareness. 

2.3.2 Vehicle/assistive device immobilized on the crossing 

Use case scenario: This use case scenario involves a situation where a vehicle or a user of an assistive 

device (such as a motorized wheelchair) becomes stuck on the crossing surface due to various reasons 

as mentioned in the TSB investigation reports outlined in sections 2.1.4, 2.1.6, 2.1.7, 2.1.13, 2.1.15 and 

2.1.19. This occurrence gives rise to a potentially dangerous situation. 

Technology enablers to enhance crossing safety: With the deployment of secure V2X 

communications and advanced machine vision sensors equipped with sophisticated AI technologies on 

the roadside infrastructure at-grade crossings, hazardous scenarios such as a wheelchair/vehicle 
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immobilized on the crossing surface could be reliably detected under varying weather and lighting 

conditions. This critical piece of information could then be leveraged in an effort to avoid a potential 

collision as follows. 

• When no trains are approaching: 

- An automated call/notification could be made to the emergency contact available at the 

crossing upon detection of such a hazard using the technology enablers mentioned above. 

This could be potentially life-saving when there is no one around to help a pedestrian with an 

assistive device immobilized on the crossing (e.g., night time, or a remote location). 

Moreover, as reported in most of the referenced incidents, the vehicles were struck by the 

train even though the train was not approaching immediately, mainly due to the vehicle 

operators' lack of knowledge about the emergency contact information. Therefore, such 

collisions could potentially have been avoided if an automated call was made to the 

emergency contact upon automated detection of such events. 

 

- A V2X SOS message [29] could be broadcast to draw the attention of drivers of nearby 

vehicles (even pedestrians via V2P) to the emergency in order to allow them to come to the 

rescue of the trapped pedestrian/vehicle. 

 

• When one or more trains are approaching:  

- While the existing framework does not incorporate the train in the communication loop, it 

makes a compelling argument to incorporate the approaching train in the loop so that this 

hazardous situation could be communicated directly to train operators as far as 1 km away [6]  

from the crossing via V2X communications. This would allow the emergency brakes to be 

engaged well in advance of the hazard being visually detected by the locomotive engineer, 

thereby increasing the chance of avoiding an imminent collision. 

2.3.3 Queue buildup on the crossing 

Use case scenario: This use case is where vehicles (rail, road or both) form a queue on the crossing 

surface. Queuing of vehicles on both road approaches, particularly on the egress of the crossing, can 

potentially lead to queuing on the crossing surface. This is particularly likely to happen when there is 

limited storage space available for the vehicles, or when long vehicles such as bendy buses and trailer 

trucks are involved. References to this use case can be found in sections 2.1.3, 2.2.2, 2.2.3, and 2.2.7. 

Technology enablers to enhance crossing safety: By utilizing advanced AI technologies based on 

multi-modal vision sensors installed at roadside infrastructure at a crossing, queuing of vehicles can be 

detected on both road approaches, particularly on the egress. The primary objective is to alert 

approaching vehicles via the use of secure V2X communications about the potential hazard of forming a 

queue on the crossing surface. Additionally, this information has the potential to be utilized proactively to 

pre-empt any appropriate traffic signals along the road(s) leading to the ingress, in an effort to reduce the 

number of vehicles joining the queue on the egress. 
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2.3.4 U-turn on the crossing 

Use case scenario: This use case was established on the basis that performing a U-turn on or within 30 

m of a railway crossing creates a potentially dangerous situation as indicated in the TSB investigation 

report in section 2.1.3. This action is also against the law as stated in the Highway Traffic Act [30]. 

Technology enablers to enhance crossing safety: Vehicle detection and tracking via the use of 

advanced AI technologies based on roadside infrastructure mounted vision sensors makes it possible to 

detect U-turns on the crossing and notify the approaching vehicles of the potentially hazardous situation 

via V2X communications. 

2.3.5 Pedestrians trespassing onto railway right-of-way 

Use case scenario: This use case is where pedestrians illegally access or cross the railway tracks at a 

grade crossing when the crossing is configured to allow rail traffic. Trespassing in these circumstances is 

highly dangerous and can lead to severe injuries or fatalities as mentioned in the TSB investigation report 

in section 2.1.3, or in the TC Notices and Orders in sections 2.2.1, 2.2.5 and 2.2.6. 

Technology enablers to enhance crossing safety: With the use of secure V2X communications and 

advanced AI technologies based on multi-modal vision sensors deployed on roadside infrastructure at a 

crossing, trespassing events can be reliably detected under varying weather and lighting conditions. This 

detection capability can then be leveraged to – 

• promptly alert the trespassers through loudspeakers in situations where a potentially dangerous 

scenario is imminent, such as the approach of a train; 

• help railway companies and road authorities evaluate if a whistling policy should be re-

established based on the frequency and nature of trespassing (e.g., during train approach, or 

other times), in cases where the crossing has an anti-whistling policy established. 

2.3.6 Trains obstructing crossing for prolonged duration 

Use case scenario: According to the Grade Crossing Regulations (GCR), it was prohibited to obstruct a 

public crossing for more than 5 min by leaving railway equipment standing on the crossing when vehicular 

or pedestrian traffic is waiting to cross it [31]. Blocking a crossing for a prolonged duration, or even for a 

short duration if it happens regularly, possesses many safety concerns including obstructing the passage 

of emergency vehicles as well as prompting pedestrians to take hazardous means to traverse through the 

crossings as mentioned in the TC Notice and Orders outlined in sections 2.2.1 and 2.2.4. 

Technology enablers to enhance crossing safety: Using advanced AI technologies based on multi-

modal vision sensors installed at roadside infrastructure at a crossing, events such as a stopped train 

blocking a crossing for more than the GCR allowed time limits can be reliably detected. This information 

can then be broadcast to approaching vehicles via secure V2X communications in an effort to enhance 

the situational awareness of their drivers, thereby allowing them, and more importantly emergency vehicle 

drivers, to detour whenever possible. 
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2.4 Summary 

In section 2 the authors provided a comprehensive study of the grade crossing collisions investigated by 

TSB since 1994, as well as the notices and orders issued by TC concerning grade crossing safety for the 

same period. The primary goal of this review was to pinpoint the underlying causes and contributing 

factors that led to the crossing collisions and the potential safety issues that prevailed at rail crossings, 

with a view to identifying potential opportunities for utilizing emerging technologies to reduce collisions 

and improve safety at grade crossings. Additionally, the review was leveraged to guide the formation of 

rail safety scenarios for at-grade crossings that could potentially benefit from the integration of emerging 

technologies including secure V2X communications, and sophisticated AI technologies utilizing multi-

modal vision sensors. This proactive approach is likely to reduce fatal accidents on at-grade crossings, 

thereby enhancing crossing safety for motorists, pedestrians and train operators. 
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3 Collection, processing and analysis of data 

To validate the six rail safety use case scenarios developed in sections 2.3.1 to 2.3.6, and better 

understand the traffic dynamics at or near grade crossings, and more importantly, to facilitate the 

development of data-driven machine vision algorithms for detection and recognition of vehicles and 

VRUs, real-world data from a public grade crossing was collected, processed, and analyzed. The 

following sub-sections provide details about the data collection, data cleaning, and data annotation 

processes used for this purpose. The authors then present an initial analysis of the dataset produced with 

a focus on the potentially unsafe events captured in the dataset. 

3.1 Data collection 

Data was collected at the public grade crossing on March Rd. in Ottawa, located at Mile 2.1 in the 

Renfrew Subdivision. This crossing, characterized by a single track and six road vehicle lanes running 

north-south, was equipped with active GCWDs such as gates, flashing lights, and bells. On average, it 

sees 1 train and 38,419 vehicles passing through daily, resulting in a cross-product of 38,419 [32]. The 

selection of this crossing was influenced in part by its moderately high ranking on Transport Canada’s 

grade crossing risk assessment tool called GradeX [32], where it ranked 2,916 out of 24,967 crossings 

(with a lower rank indicating higher risk). Additionally, its location on a high-speed road with an average 

speed of 80 km/h made it a suitable location for the project. 

The crossing's ingress and egress views were both captured using a variety of vision sensors, including 

RGB and thermal cameras, as illustrated in Figure 2. These cameras were mounted on roadside 

infrastructure west of the road.  The ingress and egress camera views were based on a vehicle traveling 

north in the east lanes.  However, the camera views were quite broad and provided good enough 

resolution to cover the ingress and egress for south-bound traffic in the west lanes too.  

The decision to use multiple sensor types stemmed from their ability to provide distinct and 

complementary information, thereby aiding in capturing a comprehensive picture of the environment. For 

instance, RGB cameras excel at capturing detailed objects and scenes, while thermal cameras, 

unaffected by lighting conditions, provide effective night vision. In the remainder of this report, RGB 

cameras will be denoted by PTZ due to their pan, tilt and zoom capability, and the two RGB cameras will 

be referred to as PTZ_ingress and PTZ_egress.  The two corresponding thermal cameras will be referred 

to as Thermal_ingress and Thermal_egress. 
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Figure 2: Ingress view of the crossing captured by RGB camara (top-left) and thermal camera (top-right); 

egress view of the crossing captured by RGB camera (bottom-left) and thermal camera (bottom-right). 

Northbound road traffic is in the far lanes and moves from right to left, and southbound road traffic is in 

the near lanes and moves from left to right. 

To comprehensively capture traffic dynamics at or near the crossing, along with variations in lighting and 

weather, data was collected at various times of the day in two different months – July and September 

2023. Table 3 provides the recording schedules and details about the collected video feeds. Camera 

frame rates in the table are in frames/s (FPS). In total, 3 batches of data totaling 154 h of video were 

captured, with each camera contributing 38.5 h of video.  

3.2 Dataset building 

The collected videos were filtered, processed and annotated to build a representative and multi-modal 

dataset containing labeled samples of vehicles and VRUs including cars, buses, trucks, pedestrians and 

cyclists, captured by RGB and thermal cameras. The instances of potentially unsafe events involving 

these road users were also included in the dataset. Such a dataset was required to develop machine 

vision algorithms to automatically detect and track vehicles and VRUs with a view to analyzing their 

behavior to be able to identify potentially unsafe events at or near a grade crossing. Sections 3.2.1 and 

3.2.2 delve into some details about how this dataset was constructed. 
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3.2.1 Data filtering and preprocessing 

The collected videos went through several filtering and pre-processing steps to ensure that the data were 

free of outliers before it could be fed through the rest of the dataset building pipeline. In particular, the 

following filtering and preprocessing steps were applied: 

1. Continuous videos were chunked into 1-min duration files with the frames extracted in JPEG 

format. 

2. To avoid redundancy in data while also retaining relevant information, videos were temporally 

sub-sampled. To this end, the collected videos were first manually reviewed to include only those 

segments capturing potentially unsafe events at or near the crossing involving vehicles and 

VRUs.  

3. The above step was followed by selecting every 5th minute for the first batch of videos and every 

10th minute for the second batch within each hour. The third batch was sub-sampled to retain only 

those segments containing VRUs to make the dataset more balanced. 

4. To remove irrelevant background information, frame sequences without vehicles and VRUs were 

dropped. 

The above steps resulted in a dataset consisting of 825 min of video data from the four cameras across 

the three batches as shown in Table 4. 

Table 3: Details of the raw video feeds collected. 

Batch Date Time 
Duration 

(h) 
Camera Resolution 

Frame rate 

(FPS) 

1 
17-Jul-
2023 

05:00 

– 

18:00 

14 

PTZ_ingress 
1920x1080 

15 

PTZ_egress 

Thermal_ingress 
640x480 

Thermal_egress 

2 
26-Jul-
2023 

10:30 

– 

23:59 

14.5 

PTZ_ingress 
1920x1080 

PTZ_egress 

Thermal_ingress 
640x480 

Thermal_egress 
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3 

20-Sep-
2023 

16:42 

– 

20:42 

4 

PTZ_ingress 1280x720 30 

PTZ_egress 1920x1080 15 

Thermal_ingress 
640x480 

30 

Thermal_egress 15 

21-Sep-
2023 

17:37 

– 

21:37 

4 

PTZ_ingress 1280x720 30 

PTZ_egress 1920x1080 15 

Thermal_ingress 
640x480 

30 

Thermal_egress 15 

22-Sep-
2023 

17:40 

– 

21:40 

4 

PTZ_ingress 1280x720 30 

PTZ_egress 1920x1080 15 

Thermal_ingress 
640x480 

30 

Thermal_egress 15 

 

Table 4: Total video minutes retained per camera per batch after the filtering process. 

Camera PTZ_ingress PTZ_egress Thermal_ingress Thermal_egress Total 

duration 

(min) 
Batch 1 2 3 1 2 3 1 2 3 1 2 3 

Duration 
(min) 

86 33 125 84 28 92 74 28 78 96 21 80 825 

 

3.2.2 Data annotation 

Data annotation in this study involved labeling data with ground-truth information, which served as human 

supervision during the development of machine learning models. To this end, video frames in the filtered 

and pre-processed dataset were labelled by human annotators using an image annotation tool called 

DarkLabel [33]. The choice of this annotation tool was motivated by several useful features, particularly its 

semi-automatic annotation capabilities, support for video input, quick and easy visualizations, and most 

importantly, the ability to work locally without requiring data to be uploaded to any third-party server. 

Below is an outline of the annotation process. 

1. For each video frame, a tight bounding box was drawn around each vehicle/VRU present in the 

frame to record its precise location within the image, its class information (i.e., the type of 

vehicle/VRU), as well as its tracking ID (an identification number for this specific object that is 

unique throughout the duration the object is visible in any of the cameras). Figure 3 illustrates the 

process. 

2. Fully occluded vehicles/VRUs were not annotated while partially occluded ones were annotated 

by estimating the extent of their full body. 

3. Videos from each camera were annotated by several annotators with each annotator annotating 

different video min. This was done to minimize the chances of any bias in the annotations. 

4. Once the annotation of the whole dataset was completed, a manual review of the annotations 

was performed on a random selection of 5% of the videos. Had there been an anomaly rate of at 
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least 20% in the review set, a full manual review of all annotations would have been conducted. 

However, this was not the case. 

 

 

Figure 3: Screenshot of DarkLabel annotation tool showing the results of a completed annotation process. 

Bounding boxes were drawn around the vehicles and VRUs to record their type and precise location 

within the image. 

3.3 Data analysis 

To better comprehend the scale and diversity of the dataset, as well as gain insights into the rail safety 

use cases based on real-world evidence, a thorough analysis of the collected data was conducted. This 

analysis is presented in sections 3.3.1 and 3.3.2. 

3.3.1 Analysis of vehicles and VRUs 

This section presents detailed statistics about the vehicle and VRU categories observed in the collected 

dataset, including their distribution across different traffic conditions, as well as the distribution of their 

sizes across different cameras. 

Table 5 displays the total count of frames and the various vehicles and VRUs that were annotated from 

each camera in the collected dataset. Each ‘Count’ column provides a separate count of the respective 

vehicle/VRU category observed by each respective camera, whereas each ‘Total’ column indicates total 

instances annotated for that category from the respective camera.  

In the table, PTZ_ingress recorded the highest number of vehicles and VRUs, with more annotated 

frames compared to the other cameras. In total, 233,117 frames were annotated across the four cameras. 

These annotations included 7,241 separate cars, 75 separate buses, 150 separate trucks, 393 separate 

persons, and 116 separate cyclists. Consequently, the dataset comprised a total instance of 333,645 
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cars, 3,718 buses, 7,367 trucks, 63,855 persons, and 11,180 cyclists. For the purpose of the dataset, a 

vehicle/VRU was considered separate as long as it remained visible within any of the four camera views. 

Table 5: Number of frames, vehicles and VRUs annotated from each camera in the collected dataset. The 

‘Count’ and ‘Total’ columns for each vehicle/VRU category are described when the table is introduced. 

Camera 
# Frames 
annotated 

# Cars # Buses # Trucks # Persons # Cyclists 

Count Total Count Total Count Total Count Total Count Total 

PTZ_ingress 107,663 5,420 161,883 49 1,930 77 3,707 224 22,686 77 3,825 

PTZ_egress 49,387 4,682 69,197 42 618 76 1,247 254 18,450 73 2,762 

Thermal_ingress 28,216 3,502 42,781 26 435 51 822 113 8,586 39 1,116 

Thermal_egress 47,907 3,883 59,784 40 735 104 1,591 121 14,133 67 3,477 

Total across all 
cameras 

233,117 7,240 333,645 75 3,718 150 7,367 393 63,855 116 11,180 

 

To understand the traffic patterns at the crossing, Figure 4 illustrates the average number of vehicles and 

VRUs passing through the crossing per min for 1 h, during the selected hours shown in the figure. The 

VRUs are separated into persons and cyclists. Rush hour commutes are notably in the 0700 hour (i.e., up 

to, but excluding 0800), the 0800 hour, 1200 hour, 1500 hour, 1600 hour, and 1700 hour, with the 

average traffic volume exceeding 30 vehicles/VRUs per min. Among these, the 0800 hour stands out with 

the highest traffic volume, averaging approximately 48 vehicles/VRUs per min, followed by the 1600 hour 

registering approximately 44 vehicles/VRUs per min on average. 
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Figure 4: Average number of vehicles and VRUs passing through the crossing per min for selected 1 h 

periods of interest. 

The left side of Figure 5 illustrates the length distributions (in pixels) of various vehicles and the height 

distributions (again in pixels) of different VRUs (again divided into persons and cyclists) observed by the 

PTZ cameras. On the right, the same distributions are depicted for the thermal cameras. VRUs, being 

shorter, dominate the lower tail of the distributions ranging from approximately 30 to 250 pixels for the 

PTZ cameras, and 18 to 120 pixels for the thermal cameras. On the other hand, buses and trucks, due to 

their larger sizes, occupy the higher tail of the distributions having a range of 120 to 1,890 pixels for the 

PTZ and 80 to 640 pixels for the thermal cameras. Cars exhibit wide variability in their lengths with the 

peak of the distribution between 150 to 250 pixels for the PTZ cameras and 100 to 150 pixels for the 

thermal cameras. Comparatively, in the thermal camera distributions, vehicles and VRUs appear smaller, 

which can be attributed to the lower resolution of thermal cameras compared to PTZ cameras as 

mentioned in Table 3. 
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Figure 5: Distribution of vehicle and VRU sizes for PTZ cameras (left) and thermal cameras (right). 

3.3.2 Analysis of the rail safety use cases 

The collected dataset allowed for the validation of the rail safety use cases developed in Sec. 2.3 based 

on real-world evidence. The different potentially unsafe events that were captured in the collected 825 

min dataset included U-turn on the crossing, queue buildup on the crossing, vehicles stopped on the 

crossing, vehicles stopped near the crossing (referred to as stopped elsewhere), as well as instances of 

jaywalking and pedestrian intrusion into the railway right-of-way. Table 6 shows the numbers of the six 

different potentially unsafe events captured by each of the four cameras over the entire data collection 

period.  

Table 6: Counts of potentially unsafe events observed in the different camera views. Caution should be 

applied when interpreting these numbers as the same event was likely captured in multiple camera views. 

Camera U-turn Queuing 
Stopped on 

crossing 
Stopped 

elsewhere 
Jaywalking Intrusion 

PTZ_ingress 5 28 1 19 83 16 

PTZ_egress 5 20 1 18 72 12 

Thermal_ingress 4 18 0 12 54 12 

Thermal_egress 4 17 1 15 78 16 

Total Unique Events 5 29 1 19 100 35 

 

In total, 5 instances of U-turn on the crossing, 29 instances of queuing, 1 instance of vehicle stopping on 

the crossing surface, 19 instances of vehicle stopping near the crossing, as well as 100 jaywalking and 35 

intrusion events were captured in the dataset. Figure 6 shows two examples (top – queuing on the 

crossing; bottom – pedestrian intrusion into the railway right-of-way) of the six event types. 
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Figure 6: Examples of some of the potentially unsafe events captured by both PTZ and thermal cameras. 

The top row depicts a scenario where cars queue up on the egress of the crossing, extending past the 

crossing into the ingress area. The bottom row shows a pedestrian (encircled in red) intruding into the 

railway right of way. 

Among the different events involving vehicles, queue buildup on either ends of the crossing was observed 

the most in the collected dataset. This was particularly concerning, especially queuing on the egress as 

mentioned in section 2.3.3, due to the potentially dangerous situation this can lead to. For example, 

queuing on the egress can potentially trap vehicles between the gate arms for a prolonged time – an 

example is shown in the top row of Figure 6 – thereby increasing the chances of collision with a train. 

To further investigate into the queuing events, Figure 7 illustrates the queuing durations for selected 1 h 

periods on the four days the events took place – one in the morning rush hour and five in the afternoon 

rush hour. As was shown previously in Figure 4, the majority of the queuing events occurred during rush 

hour commutes, particularly in the afternoon, and so those are the hours shown in Figure 7. For the 

specific crossing studied in this project, the orange line indicates the time duration from the activation of 

the crossing arms to the arrival of a train on the crossing surface. The red line indicates the time duration 

from the activation of the crossing lights/bells to the arrival of a train on the crossing surface. 

The 1600 hour (for 1600 up to but excluding 1700) registered the highest number of events, totaling 7. 

While the average queuing duration stood at 9 s, a significant portion of the events extended beyond 15 

s, with the longest lasting up to 26 s. 



 

National Research Council Canada Page 48 

Given that the time from the activation of the crossing arms until the arrival of a train at the crossing 

surface was approximately 16 s, and the time from the activation of lights/bells until the arrival of a train at 

the crossing surface was approximately 34 s for this specific crossing, and considering that the duration 

of such queuing events was entirely dictated by instantaneous traffic dynamics, it is evident that these 

events increasingly jeopardize public safety. 

 

 

Figure 7: Duration of the queuing events for selected 1 h periods in the dataset. More details about the 

orange line and red line are provided in the text where this figure is described. 

3.4 Summary 

Section 3 provides details about the collected data and the process for building a multi-modal dataset 

containing labeled samples of vehicles and VRUs for machine learning model development. It also 

presents key statistics from the collected dataset, including the distribution of the vehicles/VRUs across 

different 1 h periods of the day, as well as the distribution of their sizes across the different cameras. 

Additionally, it includes an analysis of the rail safety use cases based on real world evidence from the 

collected data. 

 

 



 

National Research Council Canada Page 49 

4 Methodology 

Inspired by recent research in human activity detection from videos [34] [35], the overall pipeline for 

detection of vehicles and VRUs (divided into persons and cyclists in this study), along with identifying 

potentially unsafe events is illustrated in Figure 8. The pipeline comprises three main components: 

i. Detection and recognition of vehicles and VRUs at, through, and around the crossing. 

ii. Tracking of detected vehicles and VRUs as they traverse through the crossing. 

iii. Identifying potentially unsafe events based on the tracked vehicles and VRUs . 

 

 

Figure 8: Overall pipeline for detection of vehicles/VRUs and the identification of potentially unsafe 

events. Best viewed when zoomed in. 

As illustrated in the figure, the input to the pipeline is raw video frames which are processed by a state-of-

the-art object detection algorithm to classify vehicles/VRUs, as well as localize them within the individual 

video frames. Each detected vehicle/VRU is then tracked over time using a multi-object tracker. The 

objective is to link the detected vehicles/VRUs across the sequence of frames in the input video, resulting 

in a collection of their trajectories. Finally, after some pre-processing steps, the discovered trajectories are 

fed as input to a set of event detection algorithms, each responsible for identifying a specific unsafe event 

(e.g., U-turn, queuing, etc.).  

The different components of this pipeline are elaborated on in sections 4.1 to 4.4. 
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4.1 Vehicle and VRU detection 

The state-of-the-art object detection algorithm called YOLOv8 [36] was trained leveraging the collected 

dataset to detect and classify the different vehicles and VRUs from both the PTZ (RGB) and thermal 

camera images. Details of the model development, model training, and model testing are outlined below. 

4.1.1 Model development 

Two different object detection models were trained based on YOLOv8 – one using the PTZ camera 

images, and the other using the thermal camera images. For each camera type, the frames in the 

collected dataset were split into three distinct sets – training, validation, and test. The training set was 

used during model development while the validation set was leveraged for best model selection and 

hyperparameter tuning. The test set was not used during training or validation, as it was reserved for final 

performance evaluation of the developed models. Additionally, the test set video minutes, wherever 

possible, were selected to be consistent across the different cameras in order to allow for evaluation 

across the different sensor modalities. 

To get a more uniform distribution across traffic dynamics, scene variations, lighting conditions, and more 

importantly, different vehicle and VRU classes, video minutes were sampled following the steps outlined 

below to obtain the training, validation, and test splits. 

1. Each set included data from rush hour and non-rush hour traffic, as well as day and night time 

traffic. To address some of the class imbalance issues in the collected dataset as revealed in 

Table 5 (e.g., too many car samples than other vehicle types and VRUs), data for the training set 

were mainly sampled from those video minutes that included the under represented classes. 

2. To prevent leakage of information from the training set to the validation/test set, consecutive 

minutes in an hour were designated for each set while making sure that there was a discontinuity 

in time between any two sets.  

3. Following standard practice, approximately 70%, 10%, and 20% of the sampled video minutes 

were selected for training, validation, and test sets, respectively.  

4.1.2 Training and inference details 

For both the PTZ and thermal camera models, the x version of YOLOv8 (aka YOLOv8x) pre-trained on 

the COCO dataset was fine-tuned. To this end, the last classification layer of the pre-trained model was 

changed from 80 (COCO dataset has 80 classes) to match the number of vehicle and VRU classes in the 

collected dataset, to be specific 5 (car, bus, truck, person and cyclist). Moreover, the backbone layers of 

YOLOv8x were kept fixed during training, since these layers mainly extract generic and meaningful 

representations of an image. To generate diverse variations in input, several data augmentation 

techniques were applied on the input images during training including random scaling, rotation, and 

translation. However, inference was performed on the actual images without any data augmentation. 

Moreover, evaluation was performed based only on the region of interest (ROI) that covered the road and 

sidewalk areas in the images. 

During training, the batch size was set to 8 for the PTZ camera images and 16 for thermal camera 

images, while during testing, it was set to 1 for both cameras. An initial learning rate of 0.001 was used to 

warm start the training process which was reduced to 0.0001 after 5 epochs. Both models were trained 

until full convergence while model selection was performed based on model performance on the 
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validation set. This meant that the best performing model on the validation set was chosen for final 

performance evaluation. 

4.2 Tracking of detected vehicles and VRUs 

The detection results from the YOLOv8 algorithm were fed as input into a multi-object tracker called 

ByteTrack [37]. The main goal of tracking the detected vehicles/VRUs was to obtain their individual 

trajectories over time so that those could be analyzed by the event detection algorithms. The novelty of 

ByteTrack stems from the fact that it processes both high and low confidence detections, effectively 

linking objects across frames even when detection confidence varies widely, thus recovering more 

trajectories for vehicles and VRUs. This resulted in more robust and accurate tracking, especially in 

challenging scenarios with occlusions and varying object appearances, phenomena that are typically 

present in vehicle/VRU detection in the wild. 

The low and high confidence thresholds for ByteTrack were set to 0.1 and 0.3, respectively. The patience 

value for keeping the lost trajectories alive was set to 30, meaning that the trajectory of any object that 

was not observed for more than 30 consecutive frames was discarded. 

4.3 Detection of potentially unsafe events 

This section describes the detection and recognition of potentially unsafe events involving vehicles and 

VRUs at a grade crossing. Referring back to Figure 8, the event detection algorithms were based on the 

analysis of vehicle/VRU trajectories available from the tracking of the detected vehicles/VRUs, while 

taking into account the configuration of intersections (danger zone, jaywalking/intrusion areas, etc.).  

Two sets of event detection algorithms were developed using algorithmics and computer vision 

techniques. The first set was related to the vehicle events (i.e., U-turn, queuing, stopped on crossing, and 

stopped elsewhere), while the second set encapsulated the VRU events (i.e., jaywalking and intrusion). 

Each algorithm supported both cameras (i.e., PTZ and thermal) and both views (i.e., ingress and egress). 

These algorithms are briefly summarized in sections 4.3.1 to 4.3.4 . 

4.3.1 U-turn event 

The U-turn event was detected by analyzing the vehicle trajectories.  Figure 9 shows that, depending on 

the viewpoint of the camera, the U-turn event could have a partial (yellow) or complete (blue) trajectory. 
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Figure 9: PTZ_egress: partial U-turn trajectory (yellow); full U-turn trajectory (blue); and U-turn area (dark 

red border). 

The algorithm was developed to detect and recognize both types of U-turns. The algorithm analyzed 

vehicle trajectories to identify those making a full U-turn as well as vehicles passing through the U-turn 

area (see Figure 9, ROI highlighted in dark red) and those making a partial U-turn. These vehicle 

trajectories were obtained from deep-learning based vehicle/VRU detection and tracking models as 

described in sections 4.1 and 4.2. 

4.3.2 Stopped on the crossing and stopped elsewhere events 

Stopped on the crossing and stopped elsewhere events share the core idea of detecting and recognizing 

a stopped or slowed vehicle on the road. This algorithm used two important parameters to quantify the 

vehicle’s motion between two successive camera frames and to determine the period of time needed to 

recognize that a vehicle was stopped or slowing down. For example, to detect a completely stationary 

vehicle, the motion of the vehicle between two successive frames should be equal to zero pixels. If the 

camera frame rate is 15 FPS and a vehicle needs to be stopped for at least 2 s before the algorithm 

reports a stopped vehicle event, the second parameter of the algorithm will be set to 30 frames. The 

algorithm should have detected a stopped vehicle over 30 consecutive frames, which corresponded to a 

time period of 2 s. These two parameters are very important especially in a V2X communication system. 

The stopped elsewhere and stopped on the crossing algorithms are differentiated based on their 

corresponding ROIs.  In Figure 10, a vehicle stopped inside the red ROI was reported as stopped on the 

crossing event while a vehicle stopped inside one of the blue ROIs was recognized as stopped 

elsewhere. 
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Figure 10: PTZ_ingress: stopped on the crossing ROI (red) and stopped elsewhere ROIs (blue). 

4.3.3 Queuing event 

The queuing event occurred in one or more traffic lanes depending on the configuration of the grade 

crossing. Figure 11 shows the crossing has four traffic lanes, with lanes 1 and 2 being the two northbound 

lanes, and lanes 3 and 4 the two southbound lanes.  The detection of queuing events was performed in 

two parallel steps. The algorithm identified all stopped or slowed vehicles in the scene using the same 

algorithm core described in section 4.3.2 for the stopped on the crossing and stopped elsewhere events. 

At the same time, the algorithm analyzed each traffic lane and reported a queuing event if at least two 

stopped or slowed vehicles were detected in the same lane. Note that multiple events were able to occur 

at the same time. For example, a vehicle could have reported as queuing and stopped on the crossing. 

The queuing algorithm had the potential to share the number and position of vehicles involved in the 

queue through a V2X communication system. The vehicle positions needed to be converted from camera 

coordinates to real world coordinates. Cameras should be calibrated to be able to perform this conversion 

effectively in any future projects. 
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Figure 11: PTZ_egress: grade crossing intersection with four traffic lanes. 

4.3.4 Jaywalking and intrusion events 

Jaywalking and intrusion events were related to VRUs (i.e., pedestrians and cyclists). The algorithm 

analyzed the VRU trajectories using the jaywalking (green) and intrusion (red) ROIs shown in Figure 12. 

The algorithm reported a jaywalking or intrusion event when a VRU crossed a jaywalking or intrusion ROI, 

respectively, through a specific number of frames. If the jaywalking or intrusion event should have been 

reported as soon as the VRU crossed the ROI, the number of frames was set to one. 

 

Figure 12: Thermal_egress: jaywalking (green) and intrusion (red) ROIs. 
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4.4 Performance metrics 

The performance of the vehicle/VRU detection models and the algorithms for identifying unsafe events 

was evaluated based on several standard metrics used for general object detection and classification 

problems. Each performance metric is described below. 

4.4.1 Precision and recall 

Precision is defined as the fraction of instances predicted as positive that are in fact positive. It is 

measured using a scale of 0 (i.e., all predictions are incorrect) to 1 (i.e., all predictions are correct). In the 

context of vehicle/VRU detection, precision indicates how accurate the models’ predictions are in terms of 

the detected vehicle/VRU instances, while for identifying unsafe events, precision refers to the accuracy 

of the detected events. 

Recall measures what fraction of the positive instances is correctly predicted as positive and is also 

measured on the scale of 0 (i.e., none of the positive instances are correctly predicted) to 1 (i.e., all 

positive instances are correctly predicted). For vehicle/VRU detection, recall indicates how complete the 

developed models are in terms of detecting all instances of vehicles/VRUs in the dataset. On the other 

hand, for unsafe event identification, recall indicates the fraction of the total events in the dataset that the 

algorithms are able to detect correctly. 

For predictive algorithms such as the ones used to train vehicle/VRU detection models, precision and 

recall are computed at a specific confidence threshold k such that predictions with confidence score 

above k are considered positive. Mathematical definitions of precision and recall are as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 =  
𝑇𝑃@𝑘 

𝑇𝑃@𝑘 + 𝐹𝑃@𝑘
;           𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 =

𝑇𝑃@𝑘

𝑇𝑃@𝑘 + 𝐹𝑁@𝑘
; 

Here, 𝑇𝑃@𝑘, 𝐹𝑃@𝑘, and 𝐹𝑁@𝑘 refer to true positive counts, false positive counts, and false negative 

counts, respectively, at the given confidence threshold k. 

Since vehicle/VRU detection required both classifying and localizing vehicles/VRUs, a prediction was 

considered true positive (TP) only if the predicted vehicle/VRU type was correct as well as the 

intersection-over-union (IoU) score (the ratio of intersection to union between the ground-truth and the 

predicted object regions in an image) was above a predefined threshold. The IoU threshold is commonly 

set to 0.5 for most applications involving vehicle/VRU detections [38], [39], and that was used for the 

study presented here. 

4.4.2 F1-score 

The F1-score combines precision and recall into a single metric to better measure the algorithm 

performance. It is defined as below. 

F1-score =
2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 

Similar to precision and recall, the F1-score ranges between 0 and 1 with higher metric values referring to 

better performance. 
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4.4.3 Confusion matrix 

A confusion matrix is used to evaluate the performance of classification and detection algorithms. It is 

essentially an 𝑁 × 𝑁 matrix, where 𝑁 is the total number of classes in the dataset. The confusion matrix 

for each class displays the fraction of observations correctly classified as belonging to that class, as well 

as the fractions of observations incorrectly classified as belonging to other class(es). Table 7 shows the 

general structure of the confusion matrix for a two-class classification problem. 

Table 7: Confusion matrix for a two-class classification problem. 

Ground truth 

(Actual observations) 

Total number 
of observations 

Detected instances 

Positive class Negative class 

Positive class True positive (TP) False Negative (FN) 

Negative class False Positive (FP) True Negative (TN) 

 

4.4.4 Mean average precision (mAP) 

Mean average precision (mAP) is a commonly used performance metric for the object detection task. It 

provides the mean of the average precision (AP) values of the different classes present in the dataset. 

AP, on the other hand, is defined as follows. mAP is used as the single most significant performance 

indicator over the whole dataset for general object detection task. 

𝐴𝑃 =  ∑ [(𝑟@𝑘 − 𝑟@(𝑘 − 1)) × max (𝑝@𝑘, 𝑝@(𝑘 − 1))] 

𝑘=𝑁−1

𝑘=1

 

 

𝑝@𝑘 = 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑎𝑡 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑘 
𝑟@𝑘 = 𝑅𝑒𝑐𝑎𝑙𝑙 𝑎𝑡 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑘 
𝑁 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑑𝑠 𝑣𝑎𝑟𝑖𝑒𝑑 𝑓𝑟𝑜𝑚 1 𝑡𝑜 0  

 

4.4.5 Precision-recall curve 

A precision-recall curve plots precision against recall for all possible confidence thresholds varied from 1 

to 0. The higher the area under the precision-recall (PR) curve, the higher the precision and recall. Since 

precision and recall vary with the confidence threshold, the PR-curve provides an intuitive measure to 

select a suitable operating threshold that maximizes both precision and recall. 

4.5 Summary 

Section 4 first provides an outline of the entire solution methodology used to address the problem at 

hand. It then delves into the necessary details for training deep learning models to detect vehicles/VRUs, 

followed by an overview of the tracking algorithm, as well as the algorithms developed to address the 

potentially unsafe events. Finally, it describes the different metrics used to evaluate the performance of 

the developed solution. 



 

National Research Council Canada Page 57 

5 Results 

In the following sub-sections, results for an automated detection and recognition of vehicles and VRUs at, 

through, and around one at-grade crossing are presented. Additionally, the performance of the algorithms 

developed to identify potentially unsafe events involving vehicles and VRUs as they traverse through a 

grade-crossing are presented. 

5.1 Detection and recognition of vehicles and VRUs 

This section presents the results of vehicle and VRU detection based on the collected dataset. Section 

5.1.1 first presents results for vehicle detection, while Section 5.1.2 through 5.1.5 presents analysis of 

model performance for vehicle and VRU detection and tracking under various operational conditions 

including variation in lighting conditions, road traffic, and video frame rate while also discussing the 

impacts of different image artifacts on model performance. 

5.1.1 Vehicle detection performance 

The performance of the different models to detect and recognize different types of vehicles (i.e., car, bus, 

and truck) was evaluated based on a subset of the collected dataset. Table 8 provides a summary of the 

data used for this purpose 

Table 8: Details of the test set used to evaluate model performance for vehicle detection. 

Date Time Camera 
# Cars 
(Total) 

# Buses 
(Total) 

# Trucks 
(Total) 

17-Jul-2023 

0550 All four cameras 625 154 0 

0715 All four cameras 526 0 97 

1610 All four cameras 3526 0 177 

26-Jul-2023 2220 All four cameras 1821 59 0 

20-Sep-2023 1744 
All but 

Thermal_ingress 
492 41 0 

 

Table 9 presents the performance of the different models trained on images from the PTZ and thermal 

cameras. The PTZ camera model performed excellently in detecting and recognizing various types of 

vehicles, especially cars, achieving an AP value of 0.96 and an F1-score of 0.92. It also showed 

comparable performance for buses and trucks. 

In contrast, the model trained on thermal camera images showed inferior performance. Although it 

performed satisfactorily for cars, with an AP of 0.86 and an F1-score of 0.82, its performance for buses 

and trucks was poor. 
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Table 9: Results of vehicle detection from PTZ and thermal camera images. The higher the AP and F1-

score values, the better the performance. 

Model 
Car Bus Truck 

AP F1-score AP F1-score AP F1-score 

PTZ 0.96 0.92 0.90 0.84 0.91 0.85 

Thermal 0.86 0.82 0.60 0.63 0.70 0.58 

 

A possible reason for the thermal camera model's poor performance could be the limited horizontal field 

of view compared to the PTZ cameras. Large vehicles like buses, especially bendy buses, and trucks 

traveling in the near lane would occupy the entire horizontal field of view for the thermal camera, making it 

difficult for the model to recognize and localize these vehicles. Figure 13 illustrates two example frames 

from the Thermal_egress camera with detection results. The vehicle traveling in the far lane in the left 

image was detected, while the one in the near lane was missed. However, further research is warranted 

to determine the exact cause of the thermal camera model's poor performance on large vehicles. 

  

Figure 13: Two example images captured by the Thermal_egress camera. The model was able to detect 

the truck travelling along the far lane (left image), while it missed the one travelling along the near lane 

(right image). 

5.1.2 Performance under varying lighting conditions 

To evaluate how the vehicle/VRU detection performance varied depending on lighting conditions across 

the different sensors, two separate splits of the test data were created – one that included only day-time 

traffic scenes, while the other included only night-time traffic scenes. Table 10 shows the details of the 

test splits. 

 

 



 

National Research Council Canada Page 59 

Table 10: Details of the test splits showing day vs. night time traffic. 

Split Date Time Camera 
# Cars 
(Total) 

# Persons 
(Total) 

# Cyclists 
(Total) 

Day 

17-Jul-2023 

1100 
PTZ_egress 115 0 0 

Thermal_egress 95 0 0 

1240 

Both PTZ 
cameras 

525 185 42 

Both thermal 
cameras 

415 155 32 

20-Sep-2023 1727 
PTZ_egress 120 10 60 

Thermal_egress 45  25 

Night 

26-Jul-2023 2250 

Both PTZ 
cameras 

155 35 0 

Both thermal 
cameras 

98 7 0 

20-Sep-2023 

1953 

Both PTZ 
cameras 

253 90 95 

Both thermal 
cameras 

220 17 53 

1957 

Both PTZ 
cameras 

264 52 0 

Both thermal 
cameras 

188 100 0 

 

Since the dataset was collected from a live grade crossing and not from any controlled testbed, the scene 

dynamics (e.g., occlusion level, traffic volume per min, vehicle/VRU proximity to the crossing) varied 

widely during different times of the day. Therefore, to allow for a fair comparison, care was taken to select 

only those video segments that exhibited similar scene dynamics across the two splits. Moreover, from 

each video min, only those frames were selected that depicted the vehicles/VRUs in close proximity to 

the crossing. 
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Figure 14: Precision-Recall curve for day time (left image) and night time traffic (right image) based on 

detection from the PTZ cameras. The higher the AP value, the better the performance. 

Figure 14 shows the results of a precision-recall analysis based on PTZ camera images. While the 

detection of cars was observed to be satisfactory both during day and night time, the performance during 

night time saw a decline of approximately 9% in the AP value. However, VRU detection was severely 

affected during night-time for PTZ camera images, with detection of persons and cyclists seeing an AP 

value drop of approximately 26% and 46%, respectively.  

The reduced performance during night time could be mainly attributed to the lack of visual features during 

night time, especially for VRUs which are generally much smaller in size than any vehicles. Another 

possible reason for the significantly reduced performance during night time could be the poor quality of 

the night time images from the PTZ cameras. Figure 15 shows two example images captured by the 

PTZ_ingress camera. As can be seen, the night time image (right) was blurry and pixelated, essentially 

diminishing visual features for the cyclist, thus causing a missed detection. 

   

Figure 15: Example detection on day time image (left) and night-time image (right) captured by the 

PTZ_ingress camera. The cyclist on the left image captured during the day was accurately detected by 

the model, while another cyclist in the same position (denoted by the white arrow) captured by the same 

camera during the night was missed. 
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Figure 16: Precision-Recall curve for day time (left) and night time traffic (right) based on detection from 

the thermal camera images. The higher the AP value, the better the performance. 

Figure 16 shows the results for the same exercise based on thermal camera images. As the precision-

recall plots reveal, vehicle and VRU detection performance was comparable across day and night time. 

This is inline with the expectation since images captured by thermal camera sensors were not affected by 

lighting variation. Figure 17 shows detection performance on two images captured by the PTZ_ingress 

and Thermal_ingress cameras, respectively. While the VRU blended into the background in the dark in 

the captured PTZ camera image, the clear thermal signature of the VRU helped it appear bright in the 

thermal camera image, thereby allowing the model to accurately detect the VRU. 

  

Figure 17: VRU detection during night time on PTZ (left) and thermal (right) camera images. While the 

model trained on PTZ camera images failed to detect the VRU (denoted by the white arrow on the right 

image), the model trained on thermal camera images was able to detect it in the corresponding thermal 

camera image. 

5.1.3 Performance under varying traffic conditions 

In order to evaluate the performance of vehicle detection under different traffic conditions, two different 

splits of the test data were created – one depicting a high volume of traffic and the other depicting a low 

traffic condition. These splits were motivated by the analysis of traffic patterns as illustrated in Figure 4. 

To be specific, a 1 min length of video data from 0830 in the first batch was selected for the high-traffic 

condition, as this minute saw 78 separate vehicles passing through the crossing. On the other hand, for 
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the low-traffic split, a 1 min video at 1100 was selected, during which 18 separate vehicles passed 

through the crossing. Table 11 provides details of the test splits. 

Table 11: Details of the test splits showing low traffic and high traffic conditions. 

Camera 
# Cars (Low traffic) # Cars (High Traffic) 

Count Total Count Total 

PTZ_ingress  

18 

201 

78 

929 

PTZ_egress 171 801 

Thermal_ingress  153 405 

Thermal_egress 85 376 

 

Figure 18 shows the results of the analysis. The detection of cars was satisfactory in both low and high 

traffic conditions, for both the PTZ and thermal camera images. However, the models showed slightly 

reduced performance in high traffic conditions on both cameras. This may be due to factors like the 

increased likelihood of occluded scenes during heavy traffic compared to low traffic situations. However, 

the performance drop was more significantly pronounced for the thermal camera images (~8% drop in the 

AP value) than those from the PTZ cameras (~2% drop in the AP value). This could be explained by the 

superior ability of the model trained on PTZ camera images in distinguishing cars in occluded scenarios 

than that trained on thermal camera images, thanks to the rich and fine details captured in PTZ camera 

images.  

An example situation based on two images from the high traffic split is illustrated in Figure 19.     

   

Figure 18: Precision-Recall curve for the low-traffic and high-traffic splits of the test data. (left) PTZ 

camera, (right) thermal camera. The higher the AP value, the better the performance. 
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Figure 19: Two occluded cars captured by the PTZ_egress (left image) and Thermal_egress (right image) 

cameras. The model trained on the PTZ camera images was successful in detecting both cars (one in the 

foreground and a second in the background) as shown in the left image, while the model trained on the 

thermal camera images failed to detect the occluded car as revealed in the right image. 

5.1.4 Effect of video frame rate 

Video frame rate is an important factor that dictates the logistics required to collect, process and analyze 

data from multi-modal vision sensors in a real-time setting. While higher frame rate offers fine-grained 

temporal dynamics of the scene captured in the camera, it incurs increased computational and storage 

demands on the processing and analysis fronts due to the sheer volume of data generated per unit of 

time, especially in a multi-modal vision sensor environment. Since increased computational demand 

would typically incur increased power consumption, capturing videos at a higher frame rate would be very 

challenging on a road-side infrastructure deployment scenario due to the limitations of logistics and 

resources such deployment environments are typically subjected to. Therefore, it is crucial to find the 

optimal video frame rate required for the application at hand. To this end, this section investigates if an 

optimal frame rate could be established to detect vehicle and VRUs that would ultimately allow for the 

detection of unsafe behaviours involving them at or near a grade crossing. 

As illustrated in Figure 8, the detected vehicles/VRUs needed to be tracked over time so that their 

trajectories could be studied to recognize their behaviour as belonging to one of the rail unsafe scenarios 

mentioned in Table 6. While detection works on individual frames and is thus irrelevant to video frame 

rate, the tracking of the detected vehicles/VRUs is influenced by video frame rate. However, among the 

different potentially unsafe events, only U-turn and jaywalking/intrusion events involved vehicles and/or 

VRUs in motion, while the other events (i.e., queuing, stopped on the crossing surface, and stopped 

elsewhere) involved stopped vehicles, thus making them much less relevant to video frame rate. 

Therefore, it is sufficient to study the impact of video frame rate with relation to U-turn and 

jaywalking/intrusion events. 

Table 12 shows the effect of varying video frame rate on the tracking performance for the U-turn event. 

There was a total of 36 separate vehicles (thus 36 separate trajectories) observed during the video 

duration selected for the analysis, with one vehicle involving in the U-turn event. The original frame rate of 

the video was 15 FPS. When the video was sampled at 10 FPS, the trajectories of all 36 vehicles were 
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successfully identified by the tracking algorithm, as opposed to only 11 when the video was sampled at 5 

FPS. Since the cameras were installed near the east side vehicle lane, vehicles travelling north along that 

lane were observed for a shorter duration in the camera frames due to the limited field of view compared 

to those travelling south along the west lane. As a result, most of the missing trajectories came from 

vehicles travelling along the east side vehicle lane.  

Table 12: Analysis of video frame rate on vehicle tracking performance for a U-turn event. 

Date Time Camera 
Frame 

rate 
(FPS) 

# Vehicle 

trajectories 

# Vehicle 

trajectories 

identified 

# U-turn 
events 

# Vehicle 
trajectories 
identified 
for the U-
turn event 

21-Sep-2023 1756 PTZ_ingress 

10 

36 

36 

1 

1 

5 13 1 

1 0 0 

 

However, it is noteworthy to mention that the vehicle performing the U-turn was successfully tracked both 

at 10 FPS and 5 FPS due to the reduced speed of the vehicle while performing the event. This finding is 

crucial as the optimal frame rate for recognizing unsafe events involving vehicles could be effectively 

reduced to 5 FPS, thereby significantly reducing the processing demands. However, any other events 

that would involve tracking a vehicle at a greater speed (e.g., speeding vehicle) would require a frame 

rate higher than 5 FPS. None of the vehicle trajectories including the one performing the U-turn event 

could be identified when the video was sampled at 1 FPS as shown in the table. 

A similar exercise was carried out for the intrusion/jaywalking events, but the results have not been 

presented in a tabular form. Since VRUs moved at a much slower speed in the videos gathered in the 

dataset, 5 FPS was observed to be adequate to track the VRUs for jaywalking/intrusion events. However, 

it remains to be investigated if 5 FPS would be adequate to track a running VRU, as there were no such 

VRU instances recorded in the collected dataset. 

Figure 20 illustrates the impact of video frame rate on tracking performance. As shown in the top row, the 

trajectory of the vehicle (denoted by a white arrow) travelling along the near lane was not identified when 

the video was sampled at 5 FPS. However, the vehicle performing the U-turn event was successfully 

tracked at both 5 FPS and 10 FPS. 
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Figure 20: Illustration of the impact of video frame rate on vehicle tracking performance. Top-row shows 

the results when tracking was performed at 10 FPS, while bottom row shows results for 5 FPS. Trajectory 

of each vehicle, as identified by the tracking algorithm, is marked in green. While the trajectory of the 

vehicle at the near lane (denoted by white arrow in the bottom-left image) could not be identified at 5 

FPS, the U-turn vehicle’s trajectory was successfully identified both at 5 FPS and 10 FPS. 

5.1.5 Sensor-specific image artifacts and their impact on detection performance 

While the preceding sections offered a quantitative analysis of the performance of vehicle/VRU detection 

and tracking across the PTZ and thermal camera sensors, this section attempts to pinpoint the different 

peculiarities and artifacts manifested in the images captured by the different sensors. Additionally, it 

presents a qualitative analysis of how these artifacts impacted the detection performance across the 

sensors. 

Apart from the blurry and pixelated image issue observed in the PTZ camera images captured during the 

night time (refer to section 5.1.2 and Figure 15 (right)), there were three other main artifacts noticed in the 

PTZ camera images. These included the presence of strong shadow, glare, and lens flare which 

manifested in the form of a reflection of the camera lens itself in the captured images. These artifacts 

were primarily observed in the third batch of data, likely because the third batch was collected in 

September when the sun's angle was different than it was in July, when the other two batches were 

collected. 

10 FPS 

5 FPS 
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Figure 21: Top row shows detection results on two example images captured by the PTZ_ingress camera 

under strong shadow, while the bottom row shows the detection results for the corresponding images 

captured by the Thermal_egress camera. In the top-left image, the person was detected accurately until a 

subsequent frame when the person was completely covered by strong shadow. The missed person due 

to the passing-car strong shadow that occurred in the next frame sequence (top-right image) is shown by 

a white arrow. Detection on the thermal camera images remained unaffected by shadow. 

The detection performance was observed to decline due to the presence of strong shadows, resulting in 

both false negatives as well as poor localization of objects. Figure 21 shows examples of detections on 

images from both the PTZ and thermal cameras under strong shadow conditions. As illustrated in the 

figure, the VRU in the top-right image went undetected because it was completely covered by strong 

shadow from a passing car, even though it was detected accurately in the preceding frame sequences. 

Furthermore, the strong shadow from the car caused the model to incorrectly extend the car's bounding 

box to include the shadow. In contrast, detections on the corresponding thermal camera images were 

unaffected. 

PTZ 

Thermal 
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Figure 22: Example of detections on PTZ_ingress camera images under strong glare conditions; (left 

image) the white car on the top-right corner of the image travelling along the far lane was accurately 

detected before entering the glare zone; (middle image) the car was missed in the next frame sequence 

as it passed through the strong glare zone (denoted by the white arrow); (right image) the car was 

detected again as it left past the glare zone. (Best viewed when zoomed in.) 

Strong glare was another prominent artifact that posed challenges for the model to detect objects from 

the PTZ camera images, eventually causing missed detections. Figure 22 presents some visualizations of 

some example detections under strong glare conditions. As the figure illustrates, the glare zone caused 

the white car travelling on the far lane to go undetected as it passed through that zone (middle image, 

marked by the white arrow), though it was accurately detected in the preceding and following frame 

sequences (left and right image, respectively). 

Furthermore, the lens flare phenomenon, which occurs when strong light directly hits the camera lens, 

was frequently observed in the third batch of PTZ camera images. Images affected by lens flare would 

typically display a bright, often circular or semicircular flare or artifact that originates from the camera lens 

itself. The result is usually a series of bright spots or a hazy, washed-out area in the image. Detection 

performance was observed to decline due to the lens flare effect in the PTZ camera images. Figure 23 

shows some example detections on one PTZ camera image that was affected by lens flare along with the 

detections on the corresponding thermal camera image. 

 

   

Figure 23: Lens flare causing the pedestrian (encircled in white on the left image) to become completely 

obscured in the PTZ_ingress camera image. The corresponding thermal image (right) allowed the model 

to detect the pedestrian accurately. 
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One image artifact issue that was found to degrade the thermal camera images was thermal washout. A 

thermal washout image loses clarity and contrast because of excessive heat or extended exposure to 

high temperatures. This issue typically arises when the thermal sensor or camera overheats, resulting in 

less accurate thermal readings and an image that looks overly bright or "washed out". Consequently, 

important details become obscured, making it difficult to identify temperature differences, hot spots, or 

thermal leaks. This essentially caused the detection model trained on thermal camera images to fail to 

detect any objects in the thermal washout regions. 

Table 13 shows nine separate video minutes in the collected dataset that were affected by thermal 

washout. It also reports the extent to which the images were impacted by this phenomenon. It appears 

that only the Thermal_ingress camera exhibited this phenomenon in the collected dataset. Figure 24 

shows two cases where detection failed due to thermal washout in the images. The top left shows a case 

where a pedestrian was not detected because it was completely obscured by a washed-out region. The 

top-right shows the pedestrian was once again successfully detected after leaving the washed-out region. 

Similarly, the vehicle in the bottom-left image was accurately detected up until the point it entered into the 

washed-out region as shown in the bottom-right image. 

 

Table 13: Details of the video segments in the collected dataset that were affected by thermal washout. 

Camera Date Time Washout severity and extents 

Thermal_ingress 
17-Jul-2023 

0900 Light washout on the top-left corner of the images 

1245 Light washout on the top-left corner of the images 

1250 Light washout on the top-left corner of the images 

1635 Heavy washout on the left half of the images 

1640 Heavy washout on the left half of the images 

1845 Light washout on the top-left corner of the images 

1850 Light washout on the top-left corner of the images 

1855 Light washout on the top-left corner of the images 

26-Jul-2023 2000 Light washout on the top-left corner of the images 
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Figure 24: Example images captured by the PTZ_ingress camera exhibiting a thermal washout 

phenomenon. In the top-left image, the pedestrian (encircled in yellow) was buried under washout was 

missed by the model, but was detected as soon as it appeared out of the washout region (top-right). In 

the bottom pair of images, the car was detected successfully (bottom-left image) until it entered into the 

washout region (marked in yellow in the bottom-right image). 

  

Pedestrian     

 Car 
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5.2 Detection and recognition of unsafe events 

This section presents the results of the event detection algorithms described in section 4.3. 

5.2.1 U-turn event 

The ground truth (GT) in the test set consisted of 10 illegal U-turn events. Table 14 shows the algorithm 

detected all 10 U-turns with no false positive or false negative results. This represented a 100% success 

rate of the algorithm for this test set. 

Table 14: Confusion matrices for the U-turn algorithm applied to 4 camera views. 

Camera view  PTZ_ingress PTZ_egress Thermal_ingress Thermal_egress 

Number of events  22 5 14 3 

GT (actual U-turn) 5 2 2 1 

TP 5 2 2 1 

FP 0 0 0 0 

TN 17 3 12 2 

FN 0 0 0 0 

 

Figure 25 shows an illegal U-turn event captured by both the PTZ ingress and PTZ egress cameras. 

   

Figure 25: Illegal U-turn event detected from PTZ_ingress (right) and PTZ_egress (left) views. 

Figure 26 shows an illegal U-turn event captured by the thermal ingress and thermal egress views. The 

detection of the U-turn event was confirmed by combining the decision results obtained from several 

camera views. 
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Figure 26: Illegal U-turn event detected from thermal ingress (right) and thermal egress (left) views. 

5.2.2 Stopped on the crossing event 

The test set included two stopped on the crossing event. Table 15 shows that, out of all 45 vehicle 

events, the algorithm detected 2 stopped on the crossing event with no false positive or false negative 

results. The success rate of the algorithm for this test set was thus 100%. 

Table 15: Confusion matrices for the stopped-on-crossing algorithm. 

Camera view  PTZ_ingress PTZ_egress Thermal_ingress Thermal_egress 

Number of events  22 5 14 4 

GT (stopped on crossing 
event) 1 0 0 1 

TP 1 0 0 1 

FP 0 0 0 0 

TN 21 5 14 3 

FN 0 0 0 0 

 

 

Figure 27 shows the algorithm result when detecting a vehicle stopped on the crossing (railway track). 
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Figure 27: Vehicle (with red rectangle) stopped on the crossing detected by the algorithm. 

5.2.3 Stopped elsewhere event 

The results of the algorithm for detection of vehicles stopped elsewhere are shown in Table 16. The 

dataset included 9 stopped elsewhere events. The algorithm correctly detected all stopped elsewhere 

events with no false positives or false negatives. The success rate of the algorithm for this test set was 

100%. 

Table 16: Confusion matrices for the stopped elsewhere algorithm. 

Camera view  PTZ_ingress PTZ_egress Thermal_ingress Thermal_egress 

Number of events  22 5 14 3 

GT (Stopped 
elsewhere) 2 2 4 1 

TP 2 2 4 1 

FP 0 0 0 0 

TN 20 3 10 2 

FN 0 0 0 0 

 

 

Figure 28 shows a stopped paramedic vehicle detected as stopped elsewhere by the algorithm. 
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Figure 28: Vehicle (with a red rectangle) detected by the algorithm as stopped elsewhere. 

5.2.4 Queuing event 

Table 17 presents the results of the queuing detection algorithm. The dataset included 24 queuing 

events. The algorithm detected all queuing events with no false positives or false negatives. 

Table 17: Confusion matrices for the queuing algorithm. 

Camera view  PTZ_ingress PTZ_egress Thermal_ingress Thermal_egress 

Number of events  22 5 14 3 

GT (queuing event) 14 1 8 1 

TP 14 1 8 1 

FP 0 0 0 0 

TN 8 4 6 2 

FN 0 0 0 0 

 

Figure 29 shows the detection results of a queuing event involving four vehicles located in traffic lane 3 

(see Figure 11 in section 4.3.3 for more information on the traffic lanes).  The top row in Figure 29 shows 

that as soon as two vehicles in succession are stopped, the algorithm recognizes that both vehicles (with 

a red rectangle) are queuing. Even though the stopped vehicles are past the railway tracks themselves, 

there is a risk that other vehicles may come along later and stop in a place where they block the tracks 

themselves.  

The bottom row shows that other vehicles (each with a red rectangle) joining the queue are also 

recognized as part of the same queue event. 
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Figure 29: Queuing event involving four vehicles (each with a red rectangle) detected by the algorithm on 

lane 3. 

Figure 30 shows the detection results of a queuing event involving three vehicles located on the fourth 

traffic lane.  In the top row, two stopped vehicles (each with a red rectangle) following one another are 

identified as queuing.  In the bottom row, a third vehicle (with a red rectangle) slowed down and then 

stopped, and so was recognized as queuing. 
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Figure 30: Queuing event involving three vehicles (each with a red rectangle) detected by the algorithm in 

lane 4. 

5.2.5 Jaywalking event 

Table 18 presents the results of the jaywalking detection algorithm. The dataset included 29 jaywalking 

events and the algorithm correctly detected 27 events. The two missing events were not real false 

negatives because two pedestrians who were walking side by side were detected as a single pedestrian 

by the detection algorithm. It was expected that the detection algorithm would only recognize the 

pedestrian facing the camera because the second one would have been hidden by him (see Figure 31). 

Thus, the jaywalking algorithm only received the trajectory of one pedestrian. Figure 32 shows the 

detection result of a jaywalking event. 

Table 18: Confusion matrices for the jaywalking algorithm. 

Camera view  PTZ_ingress PTZ_egress Thermal_ingress Thermal_egress 

Number of events  7 14 2 17 

GT (jaywalking event) 5 10 2 12 

TP 5 10 2 10 

FP 0 0 0 0 

TN 2 4 0 5 

FN 0 0 0 2 
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Figure 31: Two pedestrians (with the red rectangle), walking side by side, were detected as one person. 

 

Figure 32: Detection of a jaywalking event. 
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5.2.6 Intrusion event 

Table 19 presents the results of the intrusion detection algorithm. A pedestrian crossing the railway track 

was recognized by the algorithm as an intrusion event in the danger zone. The dataset included 11 

intrusion events and the algorithm correctly detected 10 events. The missing event was not a real false 

negative because it was related to the same scenario seen in section 5.2.5. Two pedestrians who were 

walking side by side were detected as one person by the detection algorithm due to the occlusion issue 

(see Figure 33 for the intrusion example and Figure 31 for the similar jaywalking example). Thus, the 

intrusion algorithm only received the trajectory of one pedestrian in that event.  Figure 34 shows the 

detection result of an intrusion event.  

Table 19: Confusion matrices for the intrusion algorithm. 

Camera view  PTZ_ingress PTZ_egress Thermal_ingress Thermal_egress 

Number of events  7 14 2 17 

GT (intrusion event) 2 4 0 5 

TP 2 4 0 4 

FP 0 0 0 0 

TN 5 10 2 12 

FN 0 0 0 1 
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Figure 33: Two pedestrians (with a red rectangle), walking side by side, were detected as one person due 

to the occlusion issue. 

 

Figure 34: Detection of an intrusion event, a pedestrian crossing the railway track. 
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5.3 Summary 

Section 5 presents the results of vehicle and VRU detection and tracking based on multi-modal vision 

sensors including PTZ and thermal cameras. Additionally, the results of the algorithms developed to 

recognize the potentially unsafe events involving and vehicles and VRUs at or near a grade crossing are 

presented. 
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6 Key findings and lessons learned 

This section presents a consolidated summary of the key findings and lessons learned in this project. 

6.1 Key findings 

The key findings that emerged from the literature review, the collection, processing and analysis of data, 

as well the development of deep learning algorithms for vehicle/VRU detection are summarized as 

follows: 

• Potential opportunities to reduce the likelihood of grade crossing collisions using emerging 

machine vision technologies were identified through a comprehensive review of published 

reports on crossing collisions and crossing inspections. 

• The analysis of real-world data collected from a public grade crossing validated the rail safety 

use case scenarios studied in this project. 

• Vehicle queuing on either end of the crossing was observed to be particularly concerning in the 

collected dataset due to their prolonged duration which could lead to potentially dangerous 

situations causing vehicles to become trapped on the crossing surface – thereby increasing the 

chances of collision with a train. 

• The performance of vehicle and VRU detection using advanced AI and deep learning algorithms 

based on RGB and thermal camera images was found to be satisfactory.  

• Use of both RGB and thermal cameras to detect vehicles and VRUs at or near a grade crossing 

were deemed necessary due to the complementary information available from the different 

sensors. 

• RGB cameras demonstrated excellent performance for vehicle detection during the day, while 

thermal cameras performed better at night. 

• Thermal cameras were particularly well suited for VRU detection, both during the day and at 

night. 

• Detection of vehicles under occlusion was observed to be better dealt with using RGB camera 

images. 

• An optimal video frame rate of 5 FPS was found to be adequate to capture the trajectories of 

vehicles and VRUs involved in the potentially unsafe events captured in the collected dataset. 

• Both types of cameras, especially the RGB cameras, were subjected to several different image 

artifacts causing a decline in performance for vehicle/VRU detection. 

Additionally, the development of the event detection algorithms generated the following key results: 

• Event detection algorithms mainly deal with the analysis and modeling of vehicle/VRU 

trajectories and therefore rely on the results obtained from the detection and tracking algorithms. 

• The frame rate of the camera is an important parameter to quantify the vehicle’s motion in pixels 

between two successive frames.   

• The event algorithms have the potential to share the number and position of vehicles/VRUs 

involved in the event through a V2X communication system. The vehicle positions need to be 
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converted from camera coordinates to real world coordinates. Cameras should be calibrated to 

be able to perform this conversion. 

• Vehicles and VRUs can be associated with several events. For example, a vehicle may be 

identified as queuing and stopped on the crossing at the same time. 

• The detection of an event could be confirmed by combining the decision results obtained from 

different camera models (i.e., PTZ and thermal) and different views (i.e., ingress and egress). 

• The development of deep learning based solutions for the detection and recognition of events is 

possible in the case of a large dataset. 

• The automatic detection and recognition of the intersection configuration (e.g., danger zone, 

jaywalking area, etc.) is an important task when dealing with several grade crossings. 

6.2 Lessons learned 

The lessons learned through the execution of this project included the following:  

• The visual artifacts observed in the thermal camera images (i.e., thermal washout) could be 

prevented by deploying anti-washout techniques (e.g., cooling, sun-protective enclosures etc.). 

• The visual artifacts observed in the RGB camera images, especially lens flare, were primarily 

caused by the angle of sun to the camera sensors. Therefore, positioning of the cameras, 

particularly the azimuth angle, could play a vital role in preventing such artifacts from appearing in 

the first place. 

• Detection of large vehicles (e.g., bendy buses, large trailer trucks, etc.) could be improved by 

using thermal cameras with a larger horizontal field of view. 
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Acronyms and Abbreviations 

AI artificial intelligence 

CN Canadian National Railway 

CP Canadian Pacific Railway 

EDT eastern daylight time 

EST eastern standard time 

FPS frames per second 

GCR Grade Crossing Regulations 

GCWD grade crossing warning device 

ID identification 

IoU Intersection-over-union 

LiDAR light detection and ranging 

MST mountain standard time 

PDT pacific standard time 

PTZ pan, tilt, zoom 

RADAR radio detection and ranging 

RGB red, green, blue 

ROI region of interest 

TC Transport Canada 

TSB Transportation Safety Board of Canada 

V2P vehicle-to-pedestrian 

V2X vehicle-to-everything 

VRU vulnerable road user 
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